scholarly journals Bending Response of 3D-Printed Titanium Alloy Sandwich Panels with Corrugated Channel Cores

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 556
Author(s):  
Zhenyu Zhao ◽  
Jianwei Ren ◽  
Shaofeng Du ◽  
Xin Wang ◽  
Zihan Wei ◽  
...  

Ultralight sandwich constructions with corrugated channel cores (i.e., periodic fluid-through wavy passages) are envisioned to possess multifunctional attributes: simultaneous load-carrying and heat dissipation via active cooling. Titanium alloy (Ti-6Al-4V) corrugated-channel-cored sandwich panels (3CSPs) with thin face sheets and core webs were fabricated via the technique of selective laser melting (SLM) for enhanced shear resistance relative to other fabrication processes such as vacuum brazing. Four-point bending responses of as-fabricated 3CSP specimens, including bending resistance and initial collapse modes, were experimentally measured. The bending characteristics of the 3CSP structure were further explored using a combined approach of analytical modeling and numerical simulation based on the method of finite elements (FE). Both the analytical and numerical predictions were validated against experimental measurements. Collapse mechanism maps of the 3CSP structure were subsequently constructed using the analytical model, with four collapse modes considered (face-sheet yielding, face-sheet buckling, core yielding, and core buckling), which were used to evaluate how its structural geometry affects its collapse initiation mode.

2017 ◽  
Vol 21 (8) ◽  
pp. 2779-2800 ◽  
Author(s):  
Peter Rupp ◽  
Peter Elsner ◽  
Kay A Weidenmann

In this paper, the bending stiffness-to-weight-ratio of novel hybrid sandwich structures is investigated. The build-up of the sandwich panels consisted of face sheets made from carbon fibre reinforced polymer, aluminium foam cores and an interface of foamed polyurethane. The sandwich panels were produced in a single step, infiltrating the face sheet fibres and connecting the face sheets to the core simultaneously. By means of mechanical characterization, specimens with several variations of face sheet architecture and thickness, core structure and interface properties were examined. Quasi-static four-point bending and flatwise compression tests of the sandwich composites were conducted, as well as tensile tests of the face sheets. The results of the tensile and compressive tests were integrated in analytical models, describing the sandwich stiffness depending on the load case and the face sheet volume fraction. The effective Young’s modulus of the composite, measured in the four-point bending test, correlates well to the modelled effective bending modulus calculated from the single components face sheet and core. The model underestimates the effective density of the bending specimens. It could be shown that this underestimation results from the polyurethane foam connecting the face sheets to the core, as the mass of this polyurethane is not included in the model.


Author(s):  
Shah Alam ◽  
Damodar Khanal

Abstract The goal of this paper is to analyze the impact behavior among geometrically different sandwich panels shown upon impact velocities. Initially, composite model with aluminum honeycomb core and Kevlar (K29) face sheets is developed in ABAQUS/Explicit and different impact velocities are applied. Keeping other parameters constant, model is simulated with T800S/epoxy face sheets. Residual velocities, energy absorption (%), and maximum deformation depth is calculated for sandwich panel for both models at five different velocities by executing finite element analysis. Once the better material is found for face sheets, process is extended by varying the ratio of front face sheet thickness to back face sheet thickness keeping other geometrical parameters constant to find the better geometry. Also, comparison of impact responses of sandwich composite panel on different ratio of front face sheet thickness to back face sheet thickness is done and validated with other results available in literature.


2019 ◽  
Vol 102 ◽  
pp. 90-95 ◽  
Author(s):  
Dongfeng He ◽  
Zhi Wang ◽  
Masahiro Kusano ◽  
Satoshi Kishimoto ◽  
Makoto Watanabe

2003 ◽  
Vol 1845 (1) ◽  
pp. 191-199 ◽  
Author(s):  
Ondrej Kalny ◽  
Robert J. Peterman ◽  
Guillermo Ramirez ◽  
C. S. Cai ◽  
Dave Meggers

Stiffness and ultimate load-carrying capacities of glass fiber-reinforced polymer honeycomb sandwich panels used in bridge applications were evaluated. Eleven full-scale panels with cross-section depths ranging from 6 to 31.5 in. (152 to 800 mm) have been tested to date. The effect of width-to-depth ratio on unit stiffness was found to be insignificant for panels with a width-to-depth ratio between 1 and 5. The effect of this ratio on the ultimate flexural capacity is uncertain because of the erratic nature of core-face bond failures. A simple analytical formula for bending and shear stiffness, based on material properties and geometry of transformed sections, was found to predict service-load deflections within 15% accuracy. Although some factors influencing the ultimate load-carrying capacity were clearly identified in this study, a reliable analytical prediction of the ultimate flexural capacity was not attained. This is because failures occur in the bond material between the outer faces and core, and there are significant variations in bond properties at this point due to the wet lay-up process, even for theoretically identical specimens. The use of external wrap layers may be used to shift the ultimate point of failure from the bond (resin) material to the glass fibers. Wrap serves to strengthen the relatively weak core–face interface and is believed to bring more consistency in determining the ultimate load-carrying capacity.


2017 ◽  
Vol 21 (2) ◽  
pp. 784-805 ◽  
Author(s):  
Edgars Labans ◽  
Kaspars Kalnins ◽  
Chiara Bisagni

A series of experimental tests have been carried out on three types of novel sandwich panels mainly designed for application in lightweight mobile housing. Two types of the panels are manufactured entirely from wood-based materials while the third one presents a combination of plywood for surfaces and corrugated thermoplastic composite as a core part. All sandwich panels are designed to allow rapid one-shot manufacturing. Mechanical performance has been evaluated in four-point bending comparing the data to the reference plywood board. Additionally, finite element simulations were performed to evaluate global behavior, stress distribution and provide the basis for a reliable design tool. Obtained results show sufficient mechanical characteristics suitable for floor and wall units. Compared to a solid plywood board, sandwich alternative can reach up to 42% higher specific stiffness, at the same time maintaining sufficient strength characteristics.


2016 ◽  
Vol 20 (7) ◽  
pp. 861-884 ◽  
Author(s):  
QN Zhang ◽  
XW Zhang ◽  
GX Lu ◽  
D Ruan

To study the protection property of aluminum alloy sandwich panels with honeycomb cores under the attack of bullets or debris, quasi-static perforation, and ballistic impact tests were conducted, in which the thicknesses of the face sheet and core were 0.5–2.0 and 12.7 mm, respectively, while projectiles with diameter 7.5 mm and impact velocity 50–220 m/s were employed. Based on the experiments, the influences of impact velocity, face sheet thickness, core density as well as the nose shape of the projectiles were investigated. The results showed that in the impact tests, the sandwich panels dissipated much more energy than those in quasi-static perforation tests, and the energy absorption and ballistic limit of the sandwich panels increased with the increase of impact velocity. The influence of face sheet thickness was more remarkable than the core density, which was due to the relative density of honeycomb is too small. Although the increase of core density could induce the increase of energy absorption, this effect is more effective for thinner face sheet. Moreover, under the same impact velocity about 200 m/s and face sheet thickness 1.0 mm, the ballistic limit for conical-nosed projectile is highest, while it is lowest for flat-nosed projectile.


Sign in / Sign up

Export Citation Format

Share Document