Three-Dimensional Electric Field Simulation Analysis of Typical Defects in Medium Voltage XLPE Cable Joint

Author(s):  
Liqiu Huang ◽  
Hong Xu ◽  
Xuming Wang ◽  
Jiahao Qian ◽  
Jianyong Lou
Author(s):  
Yasha Li ◽  
Huiyao Wang ◽  
Kai Chen ◽  
Jiamao Chen

Background: Electrical trees can affect the distribution of electric field and space charge in cross-linked polyethylene (XLPE) cables, and play an important role in insulation aging and breakdown of cables. Therefore, it is important to study the influence of electrical trees in cables. Methods: In this study, the finite element method of second-order tetrahedral element and electromagnetic theory method are used for calculation. A model of XLPE cable with three-dimensional electrical trees is taken as an example for calculation. Results: The results shows that the longer the trunk length is, the greater the electric field intensity at the end of the branch is; the farther the electrical trees are from the insulation side of the high voltage, the more the electric field intensity of each location decreases. Conclusion: With the increase of the resistivity of the trees, the electric field intensity and charge density tend to be stable at the end of the tree.


High Voltage ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 327-333 ◽  
Author(s):  
Lichun Shu ◽  
Yanqing Liu ◽  
Xingliang Jiang ◽  
Qin Hu ◽  
Gaohui He ◽  
...  

1997 ◽  
Vol 473 ◽  
Author(s):  
Heng-Chih Lin ◽  
Edwin C. Kan ◽  
Toshiaki Yamanaka ◽  
Simon J. Fang ◽  
Kwame N. Eason ◽  
...  

ABSTRACTFor future CMOS GSI technology, Si/SiO2 interface micro-roughness becomes a non-negligible problem. Interface roughness causes fluctuations of the surface normal electric field, which, in turn, change the gate oxide Fowler-Nordheim tunneling behavior. In this research, we used a simple two-spheres model and a three-dimensional Laplace solver to simulate the electric field and the tunneling current in the oxide region. Our results show that both quantities are strong functions of roughness spatial wavelength, associated amplitude, and oxide thickness. We found that RMS roughness itself cannot fully characterize surface roughness and that roughness has a larger effect for thicker oxide in terms of surface electric field and tunneling behavior.


Sign in / Sign up

Export Citation Format

Share Document