Impact Resistance of Armsector Steel/Ceramic/UHPCC Layered Composite Targets Against 30CrMnSiNi2A Steel Projectiles

2021 ◽  
pp. 187-235
Author(s):  
Qin Fang ◽  
Hao Wu ◽  
Xiangzhen Kong
2014 ◽  
Vol 617 ◽  
pp. 104-109 ◽  
Author(s):  
Milan Žmindák ◽  
Zoran Pelagić ◽  
Maroš Bvoc

In the recent years a big focus is subjected to the response of structures subjected to out-of-plane loading such as blasts, impact, etc. not only to homogenous materials, but also to heterogeneous materials, such as composites. Such form of loading can cause considerable damage to the structure. In the case of layered composite materials the damage can have several forms, starting from damage in layers up to delamination and full damage of the construction. This paper describes the investigation of shockwave propagation in composite structures caused by impact loading. The composite consists of carbon fibers in a polymer matrix, in which the fibers are much stiffer then the matrix. Finite element simulations were carried out for a “bird” strike impact on a composite wing leading edge. Results show a good impact resistance and good damping abilities of shockwaves.


2021 ◽  
Vol 13 (5) ◽  
pp. 981-990
Author(s):  
Youchun Zou ◽  
Chao Xiong ◽  
Junhui Yin ◽  
Kaibo Cui ◽  
Huiyong Deng ◽  
...  

The development of protective materials and structures is of great significance for improving the impact resistance, penetration resistance and spalling resistance of military equipment. At present, the layered composite structure has been widely used due to its good protective performance. In this paper, a special elastic porous material-metal rubber (MR) with excellent cushioning and damping properties was used to prepare high-performance layered composite structures. To begin with, the dynamic mechanical response and the dynamic cumulative damage effect of MR were studied through Split-Hopkinson Pressure Bar (SHPB) tests. Then, the failure form and stress wave propagation characteristics of the layered composite structures were investigated through SHPB tests and finite element method. The results show that repeated impacts can enhance the compactness of MR, thereby increasing the ultimate bearing capacity and energy absorption capacity, which is beneficial for MR to resist repeated impacts. The MR in composite structures can reduce ceramic damage, attenuate stress wave and smooth stress distribution. The titanium alloy on the back of the ceramic will aggravate the damage of the ceramic, and ultra-high molecular weight polyethylene on the back of the ceramic provides cushioning for the ceramic. Therefore, the impact resistance of the composite structure can be improved by adding MR and the reasonable arrangement of materials, and the SiC/UHMWPE/MR/TC4 composite structure has relatively reasonable stress distribution and better protection performance.


2021 ◽  
Vol 27 (2) ◽  
pp. 77-86
Author(s):  
Olawale Sanusi ◽  
Olatunde Oyelaran ◽  
Mounir Methia ◽  
Anurag Dubey ◽  
Adeolu Adediran

The Terminal ballistics is the study of science that deals with the interaction involved in two impacting bodies. This research focused on the high-impact resistance of layered composite comprising of alumina ceramic and armour steel. The composite was designed to have ceramic as the facial plate with armour steel as its backing plate. For the numerical study, the ceramic thickness was varied (6, 8, 10, 12 mm) while keeping the thickness of backing steel constant (7 mm). The projectile, 7.62 mm armour-piercing (AP), was set with a velocity of 838 m/s and made to impact the different ceramic–steel composite target configurations at zero obliquity. The study captured fracture processes of the ceramic, the deformation of projectile, and backing steel. An effective optimum thickness ratio of 1.4 (ceramic:steel; 10/7) for the ceramic/steel components with less deformation of the backing steel is found. Thereafter, the result of the numerical study was validated by experimental ballistic investigation of the determined optimum ceramic/steel ratio. The experiment corroborated the simulation results as the alumina ceramic provided efficient protection to armour steel component after a severe interaction with the impacting projectile.


Materials ◽  
2016 ◽  
Vol 9 (8) ◽  
pp. 708 ◽  
Author(s):  
Qian Zhao ◽  
Yunhong Liang ◽  
Zhihui Zhang ◽  
Xiujuan Li ◽  
Luquan Ren

2019 ◽  
Vol 11 (01) ◽  
pp. 1-7
Author(s):  
Roni Kusnowo ◽  
Kus Hanaldi

Animal feed knife is a tool that serves to cut and chop animal feed consisting of grass as the main ingredient with additives such as bran, herbs, centrate, cassava, tofu pulp and others. Therefore, as a cutting tool must have the properties of friction resistance, impact resistance, and have good sharpness, so that the material chosen is Ni-Hard 1. The use of centrifugal casting method was chosen because it has the advantage of being able to make castings with relatively thin thickness this is due to the influence of the centrifugal force on the distribution of metal liquids throughout the cavity in the mold. Case study in this study is the use of centrifugal casting methods as an alternative to gravity casting methods to overcome defects of misruns. This research was conducted to investigate the effect of speed on the formation of castings products. The method that was carried out began with a literature study on centrifugal casting, and continued by determining the material, the temperature of the cast is in the range 1250ºC - 1300ºC, and the type of mold. The next step is to do work drawings, pattern making, mold making, casting processes, fettling processes, and analysis. With variations in speed of 200 rpm, 300 rpm and 400 rpm, it can be seen the optimal speed for making this product. The results of this study obtained optimal speed at a speed of 300 rpm to make good quality of animal feed knife products.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document