Research on Dynamic Cumulative Damage Effect of Metal Rubber and Stress Wave Propagation Characteristics of Layered Composite Structure

2021 ◽  
Vol 13 (5) ◽  
pp. 981-990
Author(s):  
Youchun Zou ◽  
Chao Xiong ◽  
Junhui Yin ◽  
Kaibo Cui ◽  
Huiyong Deng ◽  
...  

The development of protective materials and structures is of great significance for improving the impact resistance, penetration resistance and spalling resistance of military equipment. At present, the layered composite structure has been widely used due to its good protective performance. In this paper, a special elastic porous material-metal rubber (MR) with excellent cushioning and damping properties was used to prepare high-performance layered composite structures. To begin with, the dynamic mechanical response and the dynamic cumulative damage effect of MR were studied through Split-Hopkinson Pressure Bar (SHPB) tests. Then, the failure form and stress wave propagation characteristics of the layered composite structures were investigated through SHPB tests and finite element method. The results show that repeated impacts can enhance the compactness of MR, thereby increasing the ultimate bearing capacity and energy absorption capacity, which is beneficial for MR to resist repeated impacts. The MR in composite structures can reduce ceramic damage, attenuate stress wave and smooth stress distribution. The titanium alloy on the back of the ceramic will aggravate the damage of the ceramic, and ultra-high molecular weight polyethylene on the back of the ceramic provides cushioning for the ceramic. Therefore, the impact resistance of the composite structure can be improved by adding MR and the reasonable arrangement of materials, and the SiC/UHMWPE/MR/TC4 composite structure has relatively reasonable stress distribution and better protection performance.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Youchun Zou ◽  
Chao Xiong ◽  
Junhui Yin ◽  
Huiyong Deng ◽  
Kaibo Cui ◽  
...  

Four composite structures (SiC/UHMWPE/TC4, SiC/TC4/UHMWPE, SiC/UHMWPE/MR/TC4, and SiC/TC4/MR/UHMWPE) were prepared using silicon carbide (SiC) ceramics, ultrahigh molecular weight polyethylene (UHMWPE), titanium alloy (TC4), and metal rubber (MR). The transmitted waves, failure forms, stress wave propagations, and energy dissipations of the composite structures were studied through Split Hopkinson Pressure Bar (SHPB) tests and numerical simulations. The results show that MR in composite structures can delay, attenuate, and smooth the stress wave, thereby reducing SiC damage. UHMWPE on the back of SiC provides cushioning for SiC, while TC4 on the back of SiC aggravates the damage of SiC. The composite structures with MR mainly dissipate the impact energy by reflecting energy, and the energy dissipation performance is better than that of composite structures without MR. A comprehensive comparison of transmitted waves, damage forms, stress wave propagations, and energy dissipations of the four composite structures shows that SiC/UHMWPE/MR/TC4 structure has the best impact resistance. Increasing the thickness of MR in the composite structures can improve the impact resistance, but there are also stress concentration and interface tensile stress.


2014 ◽  
Vol 617 ◽  
pp. 104-109 ◽  
Author(s):  
Milan Žmindák ◽  
Zoran Pelagić ◽  
Maroš Bvoc

In the recent years a big focus is subjected to the response of structures subjected to out-of-plane loading such as blasts, impact, etc. not only to homogenous materials, but also to heterogeneous materials, such as composites. Such form of loading can cause considerable damage to the structure. In the case of layered composite materials the damage can have several forms, starting from damage in layers up to delamination and full damage of the construction. This paper describes the investigation of shockwave propagation in composite structures caused by impact loading. The composite consists of carbon fibers in a polymer matrix, in which the fibers are much stiffer then the matrix. Finite element simulations were carried out for a “bird” strike impact on a composite wing leading edge. Results show a good impact resistance and good damping abilities of shockwaves.


Author(s):  
Biaobiao Zhang ◽  
W. Steve Shepard ◽  
Candace L. Floyd

Because axons serve as the conduit for signal transmission within the brain, research related to axon damage during brain injury has received much attention in recent years. Although myelinated axons appear as a uniform white matter, the complex structure of axons has not been thoroughly considered in the study of fundamental structural injury mechanisms. Most axons are surrounded by an insulating sheath of myelin. Furthermore, hollow tube-like microtubules provide a form of structural support as well as a means for transport within the axon. In this work, the effects of microtubule and its surrounding protein mediums inside the axon structure are considered in order to obtain a better understanding of wave propagation within the axon in an attempt to make progress in this area of brain injury modeling. By examining axial wave propagation using a simplified finite element model to represent microtubule and its surrounding proteins assembly, the impact caused by stress wave loads within the brain axon structure can be better understood. Through conducting a transient analysis as the wave propagates, some important characteristics relative to brain tissue injuries are studied.


1956 ◽  
Vol 23 (3) ◽  
pp. 367-372
Author(s):  
E. H. Lee ◽  
A. J. Wang

Abstract The problem of stress-wave propagation in a ring spring is considered. A ring spring consists of rings placed normal to the spring axis with alternate internal and external conical bearing surfaces. The friction between these surfaces causes a loading-unloading relation which is strongly irreversible, leading to marked energy absorption for oscillatory stressing. The attenuation of a pulse of stress is analyzed in detail as it is propagated down a spring of infinite length. The influence of certain spring characteristics is evaluated. Concentration of the absorption of the total input energy is found in the region of the impact end of the spring, and particular examples are presented.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yu Bai ◽  
Li Sun ◽  
Chenhui Wei

High-energy gas fracturing (HEGF) and gas fracturing (GF) are considered to be efficient to enhance the permeability of unconventional gas reservoir. The existing models for HEGF mainly focus on the dynamic loading of stress wave or static loading of gas pressurization, rather than on the combined actions of them. Studies on the combination of HEGF and GF (HEGF+GF) are also few. In this paper, a damage-based stress wave propagation-static mechanical equilibrium-gas flow coupling model is established. Numerical model and determination of mesomechanical parameters in finite element analysis are described in detail. Numerical simulations on crack evolution under HEGF, GF, and HEGF+GF are carried out, and the impact of in situ stress conditions on crack evolution is discussed further. A total of 11 cracks with length of 2.3-4 m in HEGF, 4 main cracks with length of 6.5–8 m in GF, and 11 radial cracks with length of 2–11.5 m in HEGF+GF are produced. Many radial cracks around the borehole are formed in HEGF and extended further in GF. The crustal stress difference is disadvantageous for crack complexity. This study can provide a reference for the application of HEGF+GF in unconventional gas reservoirs.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 160 ◽  
Author(s):  
Irene García-Moreno ◽  
Miguel Caminero ◽  
Gloria Rodríguez ◽  
Juan López-Cela

Composite structures are particularly vulnerable to impact, which drastically reduces their residual strength, in particular, at high temperatures. The glass-transition temperature (Tg) of a polymer is a critical factor that can modify the mechanical properties of the material, affecting its density, hardness and rigidity. In this work, the influence of thermal ageing on the low-velocity impact resistance and tolerance of composites is investigated by means of compression after impact (CAI) tests. Carbon-fibre-reinforced polymer (CFRP) laminates with a Tg of 195 °C were manufactured and subjected to thermal ageing treatments at 190 and 210 °C for 10 and 20 days. Drop-weight impact tests were carried out to determine the impact response of the different composite laminates. Compression after impact tests were performed in a non-standard CAI device in order to obtain the compression residual strength. Ultrasonic C-scanning of impacted samples were examined to assess the failure mechanisms of the different configurations as a function of temperature. It was observed that damage tolerance decreases as temperature increases. Nevertheless, a post-curing process was found at temperatures below the Tg that enhances the adhesion between matrix and fibres and improves the impact resistance. Finally, the results obtained demonstrate that temperature can cause significant changes to the impact behaviour of composites and must be taken to account when designing for structural applications.


Sign in / Sign up

Export Citation Format

Share Document