Endogenous levels of abscisic acid and indole-3-acetic acid during in vitro rooting of Wild Cherry explants produced by micropropagation

1989 ◽  
Vol 8 (4) ◽  
pp. 325-333 ◽  
Author(s):  
Ph. Label ◽  
B. Sotta ◽  
E. Miginiac
2015 ◽  
Vol 43 (2) ◽  
pp. 542-546 ◽  
Author(s):  
Giovanni IAPICHINO ◽  
Marcello AIRÒ ◽  
Emilio LO PRESTI ◽  
Leo SABATINO

Genista aetnensis [(Raf. ex Biv.)DC] is a large deciduous shrub or small tree native to the Italian islands of Sardinia and Sicily. Being winter hardy and characterized by high plasticity in altitude and ecology, the species is grown in gardens and landscaping, both for flower and for its attractive shape. Genista species are generally propagate by seed or semi-hardwood cuttings. In this report an efficient in vitro technique for propagation of G. aetnensis was investigated. Multiple shoots were induced on nodal segments of a mature plant of Genista aetnensis. The Murashige and Skoog medium, augmented with different concentrations of N-6-benzyladenine either singly or in combination with indole-3-acetic acid, as potential medium for shoot multiplication by nodal segments was tested. In the following experiment equal molar concentrations of four cytokinins (2-isopenthenyladenine, kinetin, zeatin and N-6-benzyladenine) were tested for ability to induce axillary shoot development from single node stem segments. The highest rate of axillary shoot proliferation was induced on the medium supplemented with 0.44 µM BA. Growth regulator requirements for shoot proliferation in G. aetnensis were satisfied by BA alone. Explants were divided, subcultured and continued to proliferate shoots. A proliferation rate of 3.5 shoots per single node explants every four weeks occurred. Seven indole-3-acetic acid concentrations (0, 0.23, 0.45, 0.91, 1.82, 3.64 or 7.29 µM) were tested to determine the optimum conditions for in vitro rooting of microshoots. The highest rooting percentage was obtained with indole-3-acetic acid at 3.64 mM (57%). Eighty percent of the in vitro rooted plantlets were successfully established in soil. This micropropagation system of G. aetnensis based on axillary shoot development from nodal segments followed by in vitro rooting should be preferred for rapid and efficient mass propagation of selected clones and could represent an alternative method to sexual and conventional asexual propagation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Martin Raspor ◽  
Václav Motyka ◽  
Slavica Ninković ◽  
Petre I. Dobrev ◽  
Jiří Malbeck ◽  
...  

HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 594-596 ◽  
Author(s):  
Giovanni Iapichino ◽  
Tony H.H. Chen ◽  
Leslie H. Fuchigami

An efficient adventitious shoot production protocol has been developed for Rhododendron laetum × aurigeranum. Shoot tips taken from greenhouse-grown plants were cultured on Anderson's medium supplemented with 74 μM 2iP. Axillary shoots were excised and cultured on medium containing 23 μM IAA and 74 μM 2iP. After 6 months, brown callus developed at the cut surfaces of the shoot-tip explants. This callus produced many adventitious shoots (up to 70 per explant). Clusters of adventitious shoots were divided, subculture, and continued to proliferate shoots. An estimated 1600-fold increase in the number of shoots could be readily achieved in 6 months. In vitro rooting of adventitious shoots was accomplished in 4 weeks. Seventy-three percent of shoots rooted on 1/4 strength Anderson's medium supplemented with 28 μm IAA. Plantlet survival was 100%3 weeks after transfer to soil. Chemical names used: 1-H-indole-3-acetic acid (MA); N-(3 -methy1-2-butenyl) -1H-purine-6 amine (2iP).


HortScience ◽  
1995 ◽  
Vol 30 (6) ◽  
pp. 1292-1294 ◽  
Author(s):  
Barbara M. Reed

Micropropagated shoots of 49 Pyrus species and cultivars and one selection of Pyronia veitchii (Trabut) Guillaumin were evaluated to test their responses to several in vitro rooting techniques. Auxin treatment was required for rooting in most cases. Eighteen of 50 accessions rooted ≥50% with a 15-second, 10-mm IBA dip followed by growth on medium with no growth regulators (NGR). Twelve accessions rooted on a medium with 10 μm IBA applied for 1 week followed by NGR medium for 3 weeks; NGR medium alone was effective for only two accessions. Twenty-eight accessions rooted poorly with IBA treatments; an additional treatment of a 15-second dip in 10 mm NAA followed by NGR medium produced ≥50% rooting for eight genotypes. Root production increased for 10 of 19 especially recalcitrant genotypes by 10 μm IAA treatments in darkness or at 30C and NAA dip treatments. Of rooted shoots, 73% survived acclimation in the greenhouse. Selections of Pyrus betulifolia Bunge, P. calleryana Decne., P. hondoensis Kikuchi and Nakai, P. koehnei C. Schneider, P. pashia Buch.-Ham. ex D. Don, P. pyrifolia (Burm.f.) Nakai cv. Shinseiki, P. regelii Rheder, P. ussuriensis Maxim., and the Pyronia veitchii selection failed to root in any of the treatments. Twenty-five of 32 P. communis L. cultivars and three other species rooted on at least one of the treatments. Chemical names used: 1-naphthaleneacetic acid (NAA), 1H-indole-3-butyric acid (IBA), 1H-indole-3-acetic acid (IAA).


HortScience ◽  
1990 ◽  
Vol 25 (2) ◽  
pp. 228-229
Author(s):  
Kil Sun Yoo ◽  
Leonard M. Pike ◽  
B. Greg Cobb

Inner scales excised from dormant bulbs of the short-day `Texas Grano 1015Y' onion (Allium cepa L.) were cultured in vitro and leaf growth was examined. Light promoted leaf growth, but no differences in leaf growth were observed for media pH between 4 and 7. Leaf growth rate in darkness was highest at 24C, reduced at 15C, and greatly reduced at SC. Kinetin promoted leaf growth at 1, 10, and 100 μm. IAA was effective at 1 and 10 μM, but not at 0.1 and 100 μm. GA3 promoted growth at 0.1 μM. No inhibitory effects of ABA on leaf growth could be detected. Chemical names used: 1-H-indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA3), 6-furfurylaminopurine (Kinetin).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanghui Jin ◽  
Bingkai Hou ◽  
Guizhi Zhang

AbstractLeaf angle is an important agronomic trait affecting photosynthesis efficiency and crop yield. Although the mechanisms involved in the leaf angle control are intensively studied in monocots, factors contribute to the leaf angle in dicots are largely unknown. In this article, we explored the physiological roles of an Arabidopsis glucosyltransferase, UGT74D1, which have been proved to be indole-3-acetic acid (IAA) glucosyltransferase in vitro. We found that UGT74D1 possessed the enzymatic activity toward IAA glucosylation in vivo and its expression was induced by auxins. The ectopically expressed UGT74D1 obviously reduced the leaf angle with an altered IAA level, auxin distribution and cell size in leaf tissues. The expression of several key genes involved in the leaf shaping and leaf positioning, including PHYTOCHROME KINASE SUBSTRATE (PKS) genes and TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) genes, were dramatically changed by ectopic expression of UGT74D1. In addition, clear transcription changes of YUCCA genes and other auxin related genes can be observed in overexpression lines. Taken together, our data indicate that glucosyltransferase UGT74D1 could affect leaf positioning through modulating auxin homeostasis and regulating transcription of PKS and TCP genes, suggesting a potential new role of UGT74D1 in regulation of leaf angle in dicot Arabidopsis.


1992 ◽  
Vol 100 (2) ◽  
pp. 692-698 ◽  
Author(s):  
Aga Schulze ◽  
Philip J. Jensen ◽  
Mark Desrosiers ◽  
J. George Buta ◽  
Robert S. Bandurski

Sign in / Sign up

Export Citation Format

Share Document