Transgenic potato plants overexpressing the pathogenesis-related STH-2 gene show unaltered susceptibility to Phytophthora infestans and potato virus X

1993 ◽  
Vol 22 (5) ◽  
pp. 775-782 ◽  
Author(s):  
C. Peter Constabel ◽  
Charles Bertrand ◽  
Normand Brisson
2002 ◽  
Vol 30 (2) ◽  
pp. 177-185 ◽  
Author(s):  
V. Doreste ◽  
P. L. Ramos ◽  
G. A. Enríquez ◽  
R. Rodríguez ◽  
R. Peral ◽  
...  

2018 ◽  
Author(s):  
Marta Grech-Baran ◽  
Kamil Witek ◽  
Katarzyna Szajko ◽  
Agnieszka I Witek ◽  
Karolina Morgiewicz ◽  
...  

ABSTRACTPotato virus Y (PVY) is a major potato pathogen that causes annual losses of billions of dollars. Control of its transmission requires extensive use of environmentally damaging insecticides. Rysto confers extreme resistance (ER) to PVY and is a valuable trait in resistance breeding programs. We isolated Rysto using Resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences Single-Molecule Real Time Sequencing). Rysto encodes a nucleotide binding-leucine rich repeat (NLR) protein with an N-terminal TIR domain, and is sufficient for PVY perception and extreme resistance in transgenic potato plants. We investigated the requirements for Rysto-dependent extreme resistance, and showed that Rysto function is temperature-independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY-resistant cultivars of potato and other Solanaceae crops.


1998 ◽  
Vol 53 (11-12) ◽  
pp. 1012-1016 ◽  
Author(s):  
Maria Borkowska ◽  
Magdalena Krzymowska ◽  
Andrzej Talarczyk ◽  
Malik F. M. Awan ◽  
Ludmila Yakovleva ◽  
...  

Abstract Soybean β-1,3-endoglucanase represents a model system for studies on early plant re­sponses to infection by fungal pathogens, and it has been implicated in the release of elicitors from fungal cell walls. In the present study, potato plants were transformed with the soybean β-1,3-endoglucanase cDNA via Agrobacterium delivery system. The transfer of the gene into potato genome was confirmed by (i) PCR amplification, (ii) Northern blot analyses, and (Hi) an increase in the activity of β-1,3-endoglucanase in transgenic plants. The transformation resulted in an increased resistance of selected transgenic plants to infection by Phytophthora infestans, an important pathogen.


2004 ◽  
Vol 14 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Anastasia Missiou ◽  
Kriton Kalantidis ◽  
Alexandra Boutla ◽  
Sergia Tzortzakaki ◽  
Martin Tabler ◽  
...  

2021 ◽  
Author(s):  
Atta Soliman ◽  
Lorne R. Adam ◽  
Pawanpuneet K. Rehal ◽  
Fouad Daayf

Reactive oxygen species (ROS) represent one of the first lines of plants’ biochemical defense against pathogens. Plants’ respiratory burst oxidase homologs (RBOHs) produce ROS as by-products in several cellular compartments. In potato tubers, Solanum tuberosum respiratory burst oxidase homolog (StRBOHs) are involved in suberization and healing of wounded tissues. StRbohA has been tested in the model plant Arabidopsis thaliana, which led to enhanced plant defense against the soil-borne pathogen Verticillium dahliae. Here, we showed that overexpressing StRbohA in potato plants enhancesd plant tolerance to the oomycete Phytophthora infestans, the causal agent of late blight disease. Transgenic potato plants expressing StRbohA showed reduced disease symptoms (necrosis) compared to the wild type check. The In parallel, the expression of pathogenesis-related genes (PRs), RBOHs, antioxidation-related genes CPRX1, PRX2, APRX1, CAT1, and CAT2, and genes involved in the biosynthesis pathways of jasmonic and salicylic acids (ICS, PAL1, PAL2, LOX1, LOX2, and LOX3) exhibited significant increases in the transgenic plants in response to infection. Following higher expression of RBOHs, ROS accumulated more in inoculation sites of the transgenic plants. ROS act as signals that activate gene expression in the SA biosynthesis pathway, leading to the accumulation of SA and triggering SA-based defense mechanisms. SA-responsive pathogenesis-related genes (PRs) showed higher expression in the transgenic plants, which resulted in the restriction of pathogen growth in plant tissues. These results represent a demonstration of the effective role of StRbohA in enhancing potato defense against P. infestans.


Sign in / Sign up

Export Citation Format

Share Document