respiratory burst oxidase
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 42)

H-INDEX

41
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Anthony E Postliglione ◽  
Gloria K Muday

Stomatal closure regulates transpiration and gas exchange in response to environmental cues. Drought upregulates ABA signaling, which elevates levels of reactive oxygen species (ROS). However, the subcellular location and identity of these ROS has received limited study. We found that in guard cells, ABA increased fluorescence of the general redox sensor, dichlorofluorescein (DCF), in distinct subcellular locations including chloroplasts, cytosol, nuclei, and cytosolic puncta. These changes were lost in ABA-insensitive quintuple receptor mutant and accentuated in an ABA-hypersensitive mutant. ABA induced ROS accumulation in these subcellular compartments was lost in mutants with defects in genes encoding hydrogen peroxide synthesizing respiratory burst oxidase homolog (RBOH) enzymes and guard cells treated with the RBOH inhibitor VAS2870, while exogenous hydrogen peroxide treatment is sufficient to close guard cells. The hydrogen peroxide-selective probe, peroxy orange1, also showed ABA-dependent increases in chloroplasts and cytosolic puncta. Using the more sensitive genetically-encoded hydrogen peroxide reporter roGFP-Orp1, we also detected significant hydrogen peroxide increases in the cytosol and nucleus. These cytosolic puncta accumulate ROS after ABA treatment show colocalization with Mitotracker and with a mitochondrial targeted mt-roGFP2-Orp1, which also revealed ABA-increased ROS in mitochondria. These results indicate that elevated hydrogen peroxide after ABA treatment in these subcellular compartments is necessary and sufficient to drive stomatal closure.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaojuan Dai ◽  
Huanan Han ◽  
Wei Huang ◽  
Lianghui Zhao ◽  
Minglei Song ◽  
...  

Hybrid breeding of tomatoes (Solanum lycopersicum), an important vegetable crop, is an effective way to improve yield and enhance disease and stress resistance. However, the efficiency of tomato hybridization is hindered by self-fertilization, which can be overcome using male sterile lines. It has been reported that reactive oxygen species (ROS) act as a key regulator for anther development, mediated by RBOH (Respiratory Burst Oxidase Homolog) genes. Here, two tomato anther-expressed genes, LeRBOH (Solyc01g099620) and LeRBOHE (Solyc07g042460), were selected to cultivate novel tomato male sterile strains. By using a CRISPR/Cas9 system with a two-sgRNA module, the lerboh, lerbohe, and lerboh lerbohe mutant lines were generated, among which the lerbohe and lerboh lerbohe mutants displayed complete male sterility but could accept wild-type pollens and produce fruits normally. Further analysis uncovered significantly decreased ROS levels and abnormal programmed cell death in lerboh lerbohe anthers, indicating a key role of ROS metabolism in tomato pollen development. Taken together, our work demonstrates a successful application of gene editing via CRISPR/Cas9 in generating male sterile tomatoes and afforded helpful information for understanding how RBOH genes regulating tomato reproduction process.


2022 ◽  
Vol 23 (2) ◽  
pp. 648
Author(s):  
Yueliang Zhang ◽  
Yiwu Zhang ◽  
Li Luo ◽  
Chunyi Lu ◽  
Weiwen Kong ◽  
...  

Respiratory burst oxidase homologs (Rbohs) are critical enzymes involved in the generation of reactive oxygen species (ROS) that play an important role in plant growth and development as well as various biotic and abiotic stresses in plants. Thus far, there have been few reports on the characterization of the Rboh gene family in Citrus. In this study, seven Rboh genes (CsRbohA~CsRbohG) were identified in the Citrus sinensis genome. The CsRboh proteins were predicted to localize to the cell membrane. Most CsRbohs contained four conserved domains, an EF-hand domain, and a transmembrane region. Phylogenetic analysis demonstrated that the CsRbohs were divided into five groups, suggesting potential distinct functions and evolution. The expression profiles revealed that these seven CsRboh genes displayed tissue-specific expression patterns, and five CsRboh genes were responsive to cold stress. Fourteen putative cis-acting elements related to stress response, hormone response, and development regulation were present within the promoters of CsRboh genes. The in-silico microRNA target transcript analyses indicated that CsRbohE might be targeted by csi-miR164. Further functional and physiological analyses showed that the knockdown of CsRbohD in trifoliate orange impaired resistance to cold stress. As a whole, our results provide valuable information for further functional studies of the CsRboh genes in response to cold stress.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Matthew J. Marcec ◽  
Kiwamu Tanaka

Calcium and reactive oxygen species (ROS) are two of the earliest second messengers in response to environmental stresses in plants. The rise and sequestration of these messengers in the cytosol and apoplast are formed by various channels, transporters, and enzymes that are required for proper defense responses. It remains unclear how calcium and ROS signals regulate each other during pattern-triggered immunity (PTI). In the present study, we examined the effects of perturbing one signal on the other in Arabidopsis leaves upon the addition of flg22, a well-studied microbe-associated molecular pattern (MAMP). To this end, a variety of pharmacological agents were used to suppress either calcium or ROS signaling. Our data suggest that cytosolic calcium elevation is required to initiate and regulate apoplastic ROS production generated by respiratory burst oxidase homologs (RBOHs). In contrast, ROS has no effect on the initiation of the calcium signal, but is required for forming a sufficient amplitude of the calcium signal. This finding using pharmacological agents is corroborated by the result of using a genetic double mutant, rbohd rbohf. Our study provides an insight into the mutual interplay of calcium and ROS signals during the MAMP-induced PTI response in plants.


2021 ◽  
Vol 22 (23) ◽  
pp. 13041
Author(s):  
Wanting Huang ◽  
Yalin Zhang ◽  
Jinglong Zhou ◽  
Feng Wei ◽  
Zili Feng ◽  
...  

Verticillium wilt, mainly caused by a soil-inhabiting fungus Verticillium dahliae, can seriously reduce the yield and quality of cotton. The complex mechanism underlying cotton resistance to Verticillium wilt remains largely unknown. In plants, reactive oxygen species (ROS) mediated by Rbohs is one of the earliest responses of plants to biotic and abiotic stresses. In our previous study, we performed a time-course phospho-proteomic analysis of roots of resistant and susceptible cotton varieties in response to V. dahliae, and found early differentially expressed protein burst oxidase homolog protein D (GhRbohD). However, the role of GhRbohD-mediated ROS in cotton defense against V. dahliae needs further investigation. In this study, we analyzed the function of GhRbohD-mediated resistance of cotton against V. dahliae in vitro and in vivo. Bioinformatics analysis showed that GhRbohD possessed the conservative structural attributes of Rbohs family, 12 members of RbohD out of 57 Rbohs in cotton. The expression of GhRbohD was significantly upregulated after V. dahliae inoculation, peaking at 6 hpi, and the phosphorylation level was also increased. A VIGS test demonstrated that ROS production, NO, H2O2 and Ca2+ contents of GhRbohD-silenced cotton plants were significantly reduced, and lignin synthesis and callose accumulation were damaged, important reasons for the impairment of GhRbohD-silenced cotton’s defense against V. dahliae. The expression levels of resistance-related genes were downregulated in GhRbohD-silenced cotton by qRT-PCR, mainly involving the lignin metabolism pathway and the jasmonic acid signaling pathway. However, overexpression of GhRbohD enhanced resistance of transgenic Arabidopsis to V. dahliae challenge. Furthermore, Y2H assays were applied to find that GhPBL9 and GhRPL12C may interact with GhRbohD. These results strongly support that GhRbohD activates ROS production to positively regulate the resistance of plants against V. dahliae.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaoqian Wang ◽  
Siqi Liu ◽  
Huili Sun ◽  
Chunyan Liu ◽  
Xinyue Li ◽  
...  

AbstractThe production of reactive oxygen species (ROS) by NADPH oxidase, which is also referred to as respiratory burst oxidase homolog (RBOH), affects several processes in plants. However, the role of RBOHs in cell wall lignification is not well understood. In this study, we show that PuRBOHF, an RBOH isoform, plays an important role in secondary wall formation in pear stone cells. ROS were closely associated with lignin deposition and stone cell formation according to microscopy data. In addition, according to the results of an in situ hybridization analysis, the stage-specific expression of PuRBOHF was higher in stone cells than in cells of other flesh tissues. Inhibitors of RBOH activity suppressed ROS accumulation and stone cell lignification in pear fruit. Moreover, transient overexpression of PuRBOHF caused significant changes in the amount of ROS and lignin that accumulated in pear fruit and flesh calli. We further showed that PuMYB169 regulates PuRBOHF expression, while PuRBOHF-derived ROS induces the transcription of PuPOD2 and PuLAC2. The findings of this study indicate that PuRBOHF-mediated ROS production, which is regulated by a lignin-related transcriptional network, is essential for monolignol polymerization and stone cell formation in pear fruit.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shaoyan Zheng ◽  
Jingqin Lu ◽  
Di Yu ◽  
Jing Li ◽  
Hai Zhou ◽  
...  

Abstract Background Leaf senescence is a highly complex and meticulous regulatory process, and the disruption of any factor involved in leaf senescence might lead to premature or delayed leaf senescence and thus result in reduced or increased crop yields. Despite sincere efforts by scientists, there remain many unsolved problems related to the regulatory factors and molecular mechanisms of leaf senescence. Results This study successfully revealed that OsHXK1 was highly expressed in senescent leaves of rice. The upregulation of OsHXK1 led to premature senescence of rice leaves, a decreased level of chlorophyll, and damage to the chloroplast structure. The overexpression of OsHXK1 resulted in increases in glucose and ROS levels and produced programmed cell death (PCD) signals earlier at the booting stage. Further analysis showed that expression level of the respiratory burst oxidase homolog (RBOH) genes and OsGLO1 were increased in OsHXK1-overexpressing plants at the booting stage. Conclusions Overall, the outcomes of this study suggested that OsHXK1 could act as a positive regulator of rice leaf senescence by mediating glucose accumulation and inducing an increase in ROS.


2021 ◽  
Vol 7 (10) ◽  
pp. 883
Author(s):  
Feng Kong ◽  
Tingwei Guo ◽  
Katrina M. Ramonell

Plants, as sessile organisms, have evolved complex systems to respond to changes in environmental conditions. Chitin is a Pathogen-Associated-Molecular Pattern (PAMP) that exists in the fungal cell walls, and can be recognized by plants and induce plant pattern-triggered immunity (PTI). Our previous studies showed that Arabidopsis Toxicos en Levadura 12 (ATL12) is highly induced in response to fungal infection and chitin treatment. We used the model organism Arabidopsis thaliana to characterize ATL12 and explore its role in fungal defense. Histochemical staining showed that pATL12-GUS was continually expressed in roots, leaves, stems, and flowers. Subcellular co-localization of the ATL12-GFP fusion protein with the plasma membrane-mcherry marker showed that ATL12 localizes to the plasma membrane. Mutants of atl12 are more susceptible to Golovinomyces cichoracearum infection, while overexpression of ATL12 increased plant resistance to the fungus. ATL12 is highly induced by chitin after two hours of treatment and ATL12 may act downstream of MAPK cascades. Additionally, 3,3′-diaminobenzidine (DAB) staining indicated that atl12 mutants generate less reactive oxygen species compared to wild-type Col-0 plants and RT-PCR indicated that ATL12-regulated ROS production may be linked to the expression of respiratory burst oxidase homolog protein D/F (AtRBOHD/F). Furthermore, we present evidence that ATL12 expression is upregulated after treatment with both salicylic acid and jasmonic acid. Taken together, these results suggest a role for ATL12 in crosstalk between hormonal, chitin-induced, and NADPH oxidase-mediated defense responses in Arabidopsis.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1457
Author(s):  
Jingjing Chang ◽  
Yanliang Guo ◽  
Jiayue Li ◽  
Zhuangzhuang Su ◽  
Chunxia Wang ◽  
...  

Cold stress is a major environmental factor that detrimentally affects plant growth and development. Melatonin has been shown to confer plant tolerance to cold stress through activating the C-REPEAT BINDING FACTOR (CBF) pathway; however, the underlying modes that enable this function remain obscure. In this study, we investigated the role of H2O2 and Ca2+ signaling in the melatonin-induced CBF pathway and cold tolerance in watermelon (Citrullus lanatus L.) through pharmacological, physiological, and genetic approaches. According to the results, melatonin induced H2O2 accumulation, which was associated with the upregulation of respiratory burst oxidase homolog D (ClRBOHD) during the early response to cold stress in watermelon. Besides, melatonin and H2O2 induced the accumulation of cytoplasmic free Ca2+ ([Ca2+]cyt) in response to cold. This was associated with the upregulation of cyclic nucleotide-gated ion channel 2 (ClCNGC2) in watermelon. However, blocking of Ca2+ influx channels abolished melatonin- or H2O2-induced CBF pathway and cold tolerance. Ca2+ also induced ClRBOHD expression and H2O2 accumulation in early response to cold stress in watermelon. Inhibition of H2O2 production in watermelon by RBOH inhibitor or in Arabidopsis by AtRBOHD knockout compromised melatonin-induced [Ca2+]cyt accumulation and melatonin- or Ca2+-induced CBF pathway and cold tolerance. Overall, these findings indicate that melatonin induces RBOHD-dependent H2O2 generation in early response to cold stress. Increased H2O2 promotes [Ca2+]cyt accumulation, which in turn induces H2O2 accumulation via RBOHD, forming a reciprocal positive-regulatory loop that mediates melatonin-induced CBF pathway and subsequent cold tolerance.


2021 ◽  
Author(s):  
Dan Liu ◽  
Yang-Yang Li ◽  
Zhi-Cheng Zhou ◽  
Xiaohua Xiang ◽  
Xin Liu ◽  
...  

ABSTRACT In plants, reactive oxygen species (ROS) produced following the expression of the respiratory burst oxidase homolog (Rboh) gene are important regulators of stress responses. However, little is known about how plants acclimate to salt stress through the Rboh-derived ROS signaling pathway. Here, we showed that a 400-bp fragment of the tobacco (Nicotiana tabacum) NtRbohE promoter played a critical role in the salt response. Using yeast one-hybrid (Y1H) screens, NtbHLH123, a bHLH transcription factor, was identified as an upstream partner of the NtRbohE promoter. These interactions were confirmed by Y1H, electrophoretic mobility assay, and chromatin immunoprecipitation assays. Overexpression of NtbHLH123 resulted in greater resistance to salt stress, while NtbHLH123-silenced plants had reduced resistance to salt stress. We also found that NtbHLH123 positively regulates the expression of NtRbohE and ROS production soon after salt stress treatment. Moreover, knockout of NtRbohE in the 35S::NtbHLH123 background resulted in reduced expression of ROS-scavenging and salt stress-related genes and salt tolerance, suggesting that NtbHLH123-regulated salt tolerance is dependent on the NtbHLH123-NtRbohE signaling pathway. Our data show that NtbHLH123 is a positive regulator and acts as a molecular switch to control a Rboh-dependent mechanism in response to salt stress in plants.


Sign in / Sign up

Export Citation Format

Share Document