Genetical studies on the difference of anther length among common wheat cultivars

Euphytica ◽  
1981 ◽  
Vol 30 (1) ◽  
pp. 45-53 ◽  
Author(s):  
M. K. Komaki ◽  
K. Tsunewaki
2021 ◽  
Vol 4 ◽  
pp. 13-20
Author(s):  
Viktoriia Plyhun ◽  
Maksym Antonyuk ◽  
Tetiana Iefimenko ◽  
Tamara Ternovska

Hybridization of wheat lines comprising fragments of alien genetic material (introgression) with common wheat cultivars is effective and widespread means of transferring alien genes into genomes of modern wheat cultivars, and remains the main method of expending genetic pool of common wheat using genes of wild relatives. Success of such transfer depends on the processes of sporo- and gametogenesis in F1 hybrids, therefore cytological assessment of this processes is obligatory. Stages of meiosis and microgametogenesis were studied on cytological preparations of spikes of F1 hybrids from reciprocal crosses of common wheat cultivars and wheat lines of introgression origin with alien genetic material from wheat wild relative Amblyopyrum muticum. Sporogenesis in F1 hybrids occurs with disorders in both male and female sexual areas. Instead of 21 closed bivalents chromosome configurations in maximal association of chromosomes in M1 PMC could contain up to 8 open bivalents, up to 12 univalents, including three- and quadrivalents. In A1 lagging chromatids were observed, and up to 5 micronuclei per cell were registered in tetrads. Quantitative characteristics of chromosome associations in M1 PMC did not differ for hybrids obtained using introgression lines as female (direct crossing) and male (reverse crossing) cross components. The difference between reciprocal crosses was detected only for the quantity of cells in tetrads with different quantity of micronuclei. F1 hybrids from direct crosses had smaller portion of cells without micronuclei, and more cells with 1-3 micronuclei compared to hybrids of reverse crosses.


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e45997 ◽  
Author(s):  
Emanuela Leoncini ◽  
Cecilia Prata ◽  
Marco Malaguti ◽  
Ilaria Marotti ◽  
Antonio Segura-Carretero ◽  
...  

1990 ◽  
Vol 70 (3) ◽  
pp. 639-660 ◽  
Author(s):  
H. W. CUTFORTH ◽  
C. A. CAMPBELL ◽  
D. JUDIESCH ◽  
R. M. DePAUW ◽  
J. M. CLARKE ◽  
...  

Historically, research has identified the optimum period of seeding Canadian Western Red Spring (CWRS) wheat in the Brown soil zone to be between late April and mid-May, and approximately mid-May in the Dark Brown soil zone. The recent development and release of new spring wheat cultivars with significantly different genetic makeup (Canada Prairie Spring (CPS) wheats) prompted this study to determine if the established criteria were valid for them. Seeding date experiments involving one CWRS wheat (Neepawa) and three CPS wheats (HY320, HY355, HY912) were carried out at Swift Current (1984–1988) and at Regina and Scott (1985–1988). Although significant seeding date × cultivar interactions occurred for several of the characteristics measured (e.g., yield, protein concentration), no cultivar consistently responded differently than the others. However, the difference in days to reach maturity between the later maturing CPS cultivars and the CWRS cultivar, Neepawa, generally increased with delayed seeding making the CPS cultivars more susceptible to early fall frost damage which could decrease their yields and grain quality. Our results showed no reason to change recommendations for seeding dates in either soil zone, and both types of wheat can be treated similarly except that late seeding for CPS wheats should be avoided.Key words: Seeding date, grain yield, GDD, protein, wheat


2017 ◽  
Vol 11 ◽  
Author(s):  
Mariateresa Lazzaro ◽  
Ambrogio Costanzo ◽  
Dalia Hosam Farag ◽  
Paolo Bàrberi

Sowing density can have a strong impact on crop stand development during wheat growing cycle. In organic and low-input agriculture, and therefore with minimum or nil use of chemical herbicides, increased sowing density is expected to affect not only grain yield but also weed suppression. In this study we tested, under Mediterranean conditions, six common wheat cultivars (three modern and three heritage) and two three-component mixtures (arranged by combining the three modern or the three heritage cultivars). The different crop stands were tested at sowing densities of 250 (low) and 400 (high, similar to standard sowing density used by local farmers) viable seeds m-2 for two growing seasons. We did not detect a significant effect of crop stand diversity (single cultivars vs mixtures) on grain yield and weed suppression. Differences were ascribed to type of cultivars used (heritage vs modern). Compared to high sowing density, in modern cultivars grain yield did not decrease significantly with low sowing density whereas in heritage cultivars it increased by 15.6%, possibly also because of 21.5% lower plant lodging. Weed biomass increased with low sowing density both in heritage and modern cultivar crop stand types. However, heritage crop stands had, on average, a lower weed biomass (56%) than modern crop stands. Moreover, weed biomass in heritage crop stands at low density (6.82 ± 1.50 g m-2) was lower than that of modern cultivars at the same sowing density (15.54 ± 3.35 g m-2), confirming the higher suppressive potential of the former. We can conclude that lower sowing density can be advisable when using heritage crop stands as it keeps productivity while decreasing plant lodging and maintaining weeds under control.


2019 ◽  
Vol 55 (8) ◽  
pp. 955-961
Author(s):  
V. A. Pukhalskiy ◽  
E. V. Zuev ◽  
L. N. Bilinskaya ◽  
A. M. Kudryavtsev

2019 ◽  
Vol 89 ◽  
pp. 102813
Author(s):  
Eugene Metakovsky ◽  
Viktor Melnik ◽  
Laura Pascual ◽  
Georgy A. Romanov ◽  
Colin W. Wrigley
Keyword(s):  

2020 ◽  
Vol 110 (2) ◽  
pp. 465-471 ◽  
Author(s):  
Soichiro Asuke ◽  
Shuko Nishimi ◽  
Yukio Tosa

Pyricularia oryzae is composed of pathotypes that show host specificity at the plant genus level. To elucidate the genetic mechanisms of the incompatibility between the Eleusine pathotype (pathogenic on finger millet) and common wheat, an Eleusine isolate (MZ5-1-6) was crossed with a Triticum isolate (Br48) pathogenic on wheat, and resulting F1 cultures were sprayed onto common wheat cultivars Hope, Norin 4 (N4), and Chinese Spring (CS). On Hope, avirulent and virulent cultures segregated in a 3:1 ratio, suggesting that two avirulence genes are involved. They were tentatively designated as eA1 and eA2. On N4 and CS, the segregation ratio was not significantly deviated from the 7:1, 15:1, or 31:1 ratios, suggesting that three or more genes are involved. A comparative analysis of the segregation patterns suggested that two of these genes were eA1 and eA2. A complementation test indicated that the third gene (tentatively designated as eA3) was the Ao9 type of the PWT3 gene controlling the avirulence of Avena and Lolium isolates on wheat. The fourth gene (tentatively designated as eA4) was detected by backcrossing 200R72, an F1 culture lacking eA1, eA2, and eA3, with Br48. Comparative analyses of phenotypes and the presence and/or absence of molecular markers in the F1 population revealed that some cultures were avirulent on N4/CS in spite of lacking eA1, eA2, eA3, and eA4, indicating the presence of the fifth gene (tentatively designated as eA5). Taken together, we conclude that at least five avirulence genes are involved in the incompatibility between MZ5-1-6 and N4/CS.


2003 ◽  
Vol 141 (2) ◽  
pp. 191-202 ◽  
Author(s):  
P. M. BERRY ◽  
J. H. SPINK ◽  
A. P. GAY ◽  
J. CRAIGON

Plant characters that determine stem and root lodging were measured on 15 winter wheat cultivars at three UK sites between 2000 and 2002. A model of lodging was used to estimate stem failure wind speeds (resistance to stem lodging) and anchorage failure wind speeds (resistance to root lodging). The degree and type of natural lodging was also recorded in the plots and this correlated well with the stem and anchorage failure wind speeds. Only a weak correlation (R2=0·33) was observed between the stem and anchorage failure wind speeds for the 15 cultivars. This can be explained by the absence of genetic correlation between the plant characters that determine the stem and anchorage strength. There was a significant interaction between type of lodging (stem or root) and cultivar for failure wind speed (P<0·001). This showed that the difference between the resistances for root and stem lodging was not the same for all cultivars. Separate classifications for the stem and root lodging resistance of cultivars are developed that would allow the most appropriate crop management to reduce the risk of both types of lodging. Significant differences were found between cultivars for all lodging-related plant characters (P<0·05). These resulted in the cultivar range of the anchorage failure moment to be 110% of the overall mean. Stem failure moment, shoot and plant base bending moments had ranges of 37–49% of their overall means. Breeders should select for wide, deep root plates and wide stems with a high stem wall failure yield stress for the greatest improvement in lodging resistance.


2002 ◽  
Vol 92 (6) ◽  
pp. 624-630 ◽  
Author(s):  
Christina Cowger ◽  
Christopher C. Mundt

The selective effect of quantitative host resistance on pathogen aggressiveness is poorly understood. Because two previous experiments with a small number of bread wheat cultivars and isolates of Mycosphaerella graminicola had indicated that more susceptible hosts selected for more aggressive isolates, we conducted a larger experiment to test that hypothesis. In each of 2 years, six cultivars differing in their levels of partial resistance were planted in field plots, and isolates were collected from each cultivar early and late in the growing season. The isolates were inoculated as populations bulked by cultivar of origin, field replicate, and collection date on seedlings of the same six cultivars in the greenhouse. The selective impact of a cultivar on aggressiveness was measured as the difference in aggressiveness between early and late isolates from that cultivar. Regression of those differences on disease severity in the field yielded significance values of 0.0531 and 0.0037 for the 2 years, with moderately resistant cultivars selecting for more aggressive isolates. In a related experiment, the protectant fungicide chlorothalonil was applied to plots of two susceptible cultivars to retard epidemic development. When tested in the greenhouse, isolates of M. graminicola from those plots were significantly more aggressive than isolates from the same cultivars unprotected by fungicide.


Sign in / Sign up

Export Citation Format

Share Document