Molecular cloning and evolutionary analysis of the calcium-modulated contractile protein, centrin, in green algae and land plants

1993 ◽  
Vol 23 (6) ◽  
pp. 1243-1254 ◽  
Author(s):  
Debashish Bhattacharya ◽  
Jutta Steink�tter ◽  
Michael Melkonian
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maria Dalgaard Mikkelsen ◽  
Jesper Harholt ◽  
Bjørge Westereng ◽  
David Domozych ◽  
Stephen C. Fry ◽  
...  

AbstractThe charophycean green algae (CGA or basal streptophytes) are of particular evolutionary significance because their ancestors gave rise to land plants. One outstanding feature of these algae is that their cell walls exhibit remarkable similarities to those of land plants. Xyloglucan (XyG) is a major structural component of the cell walls of most land plants and was originally thought to be absent in CGA. This study presents evidence that XyG evolved in the CGA. This is based on a) the identification of orthologs of the genetic machinery to produce XyG, b) the identification of XyG in a range of CGA and, c) the structural elucidation of XyG, including uronic acid-containing XyG, in selected CGA. Most notably, XyG fucosylation, a feature considered as a late evolutionary elaboration of the basic XyG structure and orthologs to the corresponding biosynthetic enzymes are shown to be present in Mesotaenium caldariorum.


2002 ◽  
Vol 38 (2) ◽  
pp. 237-240 ◽  
Author(s):  
Russell L. Chapman ◽  
Debra A. Waters
Keyword(s):  

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 136
Author(s):  
David Stenitzer ◽  
Réka Mócsai ◽  
Harald Zechmeister ◽  
Ralf Reski ◽  
Eva L. Decker ◽  
...  

In the animal kingdom, a stunning variety of N-glycan structures have emerged with phylogenetic specificities of various kinds. In the plant kingdom, however, N-glycosylation appears to be strictly conservative and uniform. From mosses to all kinds of gymno- and angiosperms, land plants mainly express structures with the common pentasaccharide core substituted with xylose, core α1,3-fucose, maybe terminal GlcNAc residues and Lewis A determinants. In contrast, green algae biosynthesise unique and unusual N-glycan structures with uncommon monosaccharides, a plethora of different structures and various kinds of O-methylation. Mosses, a group of plants that are separated by at least 400 million years of evolution from vascular plants, have hitherto been seen as harbouring an N-glycosylation machinery identical to that of vascular plants. To challenge this view, we analysed the N-glycomes of several moss species using MALDI-TOF/TOF, PGC-MS/MS and GC-MS. While all species contained the plant-typical heptasaccharide with no, one or two terminal GlcNAc residues (MMXF, MGnXF and GnGnXF, respectively), many species exhibited MS signals with 14.02 Da increments as characteristic for O-methylation. Throughout all analysed moss N-glycans, the level of methylation differed strongly even within the same family. In some species, methylated glycans dominated, while others had no methylation at all. GC-MS revealed the main glycan from Funaria hygrometrica to contain 2,6-O-methylated terminal mannose. Some mosses additionally presented very large, likewise methylated complex-type N-glycans. This first finding of the methylation of N-glycans in land plants mirrors the presumable phylogenetic relation of mosses to green algae, where the O-methylation of mannose and many other monosaccharides is a common trait.


Biosystems ◽  
1992 ◽  
Vol 28 (1-3) ◽  
pp. 127-137 ◽  
Author(s):  
Russell L. Chapman ◽  
Mark A. Buchheim

2014 ◽  
Vol 206 (1) ◽  
pp. 352-367 ◽  
Author(s):  
Sylwia Alaba ◽  
Pawel Piszczalka ◽  
Halina Pietrykowska ◽  
Andrzej M. Pacak ◽  
Izabela Sierocka ◽  
...  
Keyword(s):  

Data in Brief ◽  
2018 ◽  
Vol 19 ◽  
pp. 2356-2363 ◽  
Author(s):  
Guillermo E. Santa María ◽  
Sonia Oliferuk ◽  
Jorge I. Moriconi
Keyword(s):  

2021 ◽  
Author(s):  
Ginga Shimakawa ◽  
Eiichi Shoguchi ◽  
Adrien Burlacot ◽  
Kentaro Ifuku ◽  
Yufen Che ◽  
...  

Photosynthesis in cyanobacteria, green algae, and basal land plants is protected against excess reducing pressure on the photosynthetic chain by flavodiiron proteins (FLV) that dissipate photosynthetic electrons by reducing O2. In these organisms, the genes encoding FLV are always conserved in the form of a pair of two-type isozymes (FLVA and FLVB) that are believed to function in O2 photo-reduction as a heterodimer. While coral symbionts (dinoflagellates of the family Symbiodiniaceae) are the only algae to harbor FLV in photosynthetic red plastid lineage, only one gene is found in transcriptomes and its role and activity remain unknown. Here, we characterized the FLV genes in Symbiodiniaceae and found that its coding region is composed of tandemly repeated FLV sequences. By measuring the O2-dependent electron flow and P700 oxidation, we suggest that this atypical FLV is active in vivo. Based on the amino-acid sequence alignment and the phylogenetic analysis, we conclude that in coral symbionts, the gene pair for FLVA and FLVB have been fused to construct one coding region for a hybrid enzyme, which presumably occurred when or after both genes were inherited from basal green algae to the dinoflagellate. Immunodetection suggested the FLV polypeptide to be cleaved by a post-translational mechanism, adding it to the rare cases of polycistronic genes in eukaryotes. Our results demonstrate that FLV are active in coral symbionts with genomic arrangement that is unique to these species. The implication of these unique features on their symbiotic living environment is discussed.


Sign in / Sign up

Export Citation Format

Share Document