scholarly journals Ancient origin of fucosylated xyloglucan in charophycean green algae

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maria Dalgaard Mikkelsen ◽  
Jesper Harholt ◽  
Bjørge Westereng ◽  
David Domozych ◽  
Stephen C. Fry ◽  
...  

AbstractThe charophycean green algae (CGA or basal streptophytes) are of particular evolutionary significance because their ancestors gave rise to land plants. One outstanding feature of these algae is that their cell walls exhibit remarkable similarities to those of land plants. Xyloglucan (XyG) is a major structural component of the cell walls of most land plants and was originally thought to be absent in CGA. This study presents evidence that XyG evolved in the CGA. This is based on a) the identification of orthologs of the genetic machinery to produce XyG, b) the identification of XyG in a range of CGA and, c) the structural elucidation of XyG, including uronic acid-containing XyG, in selected CGA. Most notably, XyG fucosylation, a feature considered as a late evolutionary elaboration of the basic XyG structure and orthologs to the corresponding biosynthetic enzymes are shown to be present in Mesotaenium caldariorum.

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 354 ◽  
Author(s):  
Yves Hsieh ◽  
Philip Harris

Xylans with a variety of structures have been characterised in green algae, including chlorophytes (Chlorophyta) and charophytes (in the Streptophyta), and red algae (Rhodophyta). Substituted 1,4-β-d-xylans, similar to those in land plants (embryophytes), occur in the cell wall matrix of advanced orders of charophyte green algae. Small proportions of 1,4-β-d-xylans have also been found in the cell walls of some chlorophyte green algae and red algae but have not been well characterised. 1,3-β-d-Xylans occur as triple helices in microfibrils in the cell walls of chlorophyte algae in the order Bryopsidales and of red algae in the order Bangiales. 1,3;1,4-β-d-Xylans occur in the cell wall matrix of red algae in the orders Palmariales and Nemaliales. In the angiosperm Arabidopsis thaliana, the gene IRX10 encodes a xylan 1,4-β-d-xylosyltranferase (xylan synthase), and, when heterologously expressed, this protein catalysed the production of the backbone of 1,4-β-d-xylans. An orthologous gene from the charophyte green alga Klebsormidium flaccidum, when heterologously expressed, produced a similar protein that was also able to catalyse the production of the backbone of 1,4-β-d-xylans. Indeed, it is considered that land plant xylans evolved from xylans in ancestral charophyte green algae. However, nothing is known about the biosynthesis of the different xylans found in chlorophyte green algae and red algae. There is, thus, an urgent need to identify the genes and enzymes involved.


2012 ◽  
Vol 7 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Iben Sørensen ◽  
Jocelyn K.C. Rose ◽  
Jeff J. Doyle ◽  
David S. Domozych ◽  
William G.T. Willats

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Jiawei Wang ◽  
Eiji Minami ◽  
Mohd Asmadi ◽  
Haruo Kawamoto

AbstractThe thermal degradation reactivities of hemicellulose and cellulose in wood cell walls are significantly different from the thermal degradation behavior of the respective isolated components. Furthermore, the degradation of Japanese cedar (Cryptomeria japonica, a softwood) is distinct from that of Japanese beech (Fagus crenata, a hardwood). Lignin and uronic acid are believed to play crucial roles in governing this behavior. In this study, the effects of ball milling for various durations of time on the degradation reactivities of cedar and beech woods were evaluated based on the recovery rates of hydrolyzable sugars from pyrolyzed wood samples. The applied ball-milling treatment cleaved the lignin β-ether bonds and reduced the crystallinity of cellulose, as determined by X-ray diffraction. Both xylan and glucomannan degraded in a similar temperature range, although the isolated components exhibited different reactivities because of the catalytic effect of uronic acid bound to the xylose chains. These observations can be explained by the more homogeneous distribution of uronic acid in the matrix of cell walls as a result of ball milling. As observed for holocelluloses, cellulose in the ball-milled woods degraded in two temperature ranges (below 320 °C and above); a significant amount of cellulose degraded in the lower temperature range, which significantly changed the shapes of the thermogravimetric curves. This report compares the results obtained for cedar and beech woods, and discusses them in terms of the thermal degradation of the matrix and cellulose microfibrils in wood cell walls and role of lignin. Such information is crucial for understanding the pyrolysis and heat treatment of wood.


2002 ◽  
Vol 38 (2) ◽  
pp. 237-240 ◽  
Author(s):  
Russell L. Chapman ◽  
Debra A. Waters
Keyword(s):  

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 136
Author(s):  
David Stenitzer ◽  
Réka Mócsai ◽  
Harald Zechmeister ◽  
Ralf Reski ◽  
Eva L. Decker ◽  
...  

In the animal kingdom, a stunning variety of N-glycan structures have emerged with phylogenetic specificities of various kinds. In the plant kingdom, however, N-glycosylation appears to be strictly conservative and uniform. From mosses to all kinds of gymno- and angiosperms, land plants mainly express structures with the common pentasaccharide core substituted with xylose, core α1,3-fucose, maybe terminal GlcNAc residues and Lewis A determinants. In contrast, green algae biosynthesise unique and unusual N-glycan structures with uncommon monosaccharides, a plethora of different structures and various kinds of O-methylation. Mosses, a group of plants that are separated by at least 400 million years of evolution from vascular plants, have hitherto been seen as harbouring an N-glycosylation machinery identical to that of vascular plants. To challenge this view, we analysed the N-glycomes of several moss species using MALDI-TOF/TOF, PGC-MS/MS and GC-MS. While all species contained the plant-typical heptasaccharide with no, one or two terminal GlcNAc residues (MMXF, MGnXF and GnGnXF, respectively), many species exhibited MS signals with 14.02 Da increments as characteristic for O-methylation. Throughout all analysed moss N-glycans, the level of methylation differed strongly even within the same family. In some species, methylated glycans dominated, while others had no methylation at all. GC-MS revealed the main glycan from Funaria hygrometrica to contain 2,6-O-methylated terminal mannose. Some mosses additionally presented very large, likewise methylated complex-type N-glycans. This first finding of the methylation of N-glycans in land plants mirrors the presumable phylogenetic relation of mosses to green algae, where the O-methylation of mannose and many other monosaccharides is a common trait.


Biosystems ◽  
1992 ◽  
Vol 28 (1-3) ◽  
pp. 127-137 ◽  
Author(s):  
Russell L. Chapman ◽  
Mark A. Buchheim

Sign in / Sign up

Export Citation Format

Share Document