scholarly journals O-methylated N-glycans Distinguish Mosses from Vascular Plants

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 136
Author(s):  
David Stenitzer ◽  
Réka Mócsai ◽  
Harald Zechmeister ◽  
Ralf Reski ◽  
Eva L. Decker ◽  
...  

In the animal kingdom, a stunning variety of N-glycan structures have emerged with phylogenetic specificities of various kinds. In the plant kingdom, however, N-glycosylation appears to be strictly conservative and uniform. From mosses to all kinds of gymno- and angiosperms, land plants mainly express structures with the common pentasaccharide core substituted with xylose, core α1,3-fucose, maybe terminal GlcNAc residues and Lewis A determinants. In contrast, green algae biosynthesise unique and unusual N-glycan structures with uncommon monosaccharides, a plethora of different structures and various kinds of O-methylation. Mosses, a group of plants that are separated by at least 400 million years of evolution from vascular plants, have hitherto been seen as harbouring an N-glycosylation machinery identical to that of vascular plants. To challenge this view, we analysed the N-glycomes of several moss species using MALDI-TOF/TOF, PGC-MS/MS and GC-MS. While all species contained the plant-typical heptasaccharide with no, one or two terminal GlcNAc residues (MMXF, MGnXF and GnGnXF, respectively), many species exhibited MS signals with 14.02 Da increments as characteristic for O-methylation. Throughout all analysed moss N-glycans, the level of methylation differed strongly even within the same family. In some species, methylated glycans dominated, while others had no methylation at all. GC-MS revealed the main glycan from Funaria hygrometrica to contain 2,6-O-methylated terminal mannose. Some mosses additionally presented very large, likewise methylated complex-type N-glycans. This first finding of the methylation of N-glycans in land plants mirrors the presumable phylogenetic relation of mosses to green algae, where the O-methylation of mannose and many other monosaccharides is a common trait.

2021 ◽  
Author(s):  
David Stenitzer ◽  
Réka Mócsai ◽  
Harald Zechmeister ◽  
Ralf Reski ◽  
Eva L. Decker ◽  
...  

In the animal kingdom, a stunning variety of N-glycan structures has emerged with phylogenetic specificities of various kinds. In the plant kingdom, however, N-glycosylation appears as strictly conservative and uniform. From mosses to all kinds of gymno- and angiosperms, land plants mainly express structures with the common pentasaccharide core substituted with xylose, core α1,3-fucose, maybe terminal GlcNAc residues and Lewis A determinants. In contrast, green algae biosynthesize unique and unusual N-glycan structures with uncommon monosaccharides, a plethora of different structures and various kinds of O-methylation. Mosses, a group of plants that are separated by at least 400 million years of evolution from vascular plants, were hitherto seen as harbouring an N-glycosylation machinery identical to that of vascular plants. To challenge this view, we have analysed the N-glycomes of several moss species using MALDI-TOF/TOF, PGC-MS/MS and GC-MS. While all species contained the plant-typical heptasaccharide with no, one or two terminal GlcNAc residues (MMXF, MGnXF and GnGnXF, respectively), many species exhibited MS signals with 14.02 Da increments as characteristic for O-methylation. Throughout all analysed moss N-glycans the level of methylation differed strongly even in the same family. In some species, methylated glycans dominated, while others had no methylation at all. GC-MS revealed the main glycan from Funaria hygrometrica to contain 2,6-O-methylated terminal mannose. Some mosses additionally presented very large, likewise methylated complex-type N-glycans. This first finding of methylation of N-glycans in land plants mirrors the presumable phylogenetic relation of mosses to green algae, where O-methylation of mannose and many other monosaccharides is a common trait.


2017 ◽  
Vol 373 (1739) ◽  
pp. 20170042 ◽  
Author(s):  
Alexander J. Hetherington ◽  
Liam Dolan

There are two general types of rooting systems in extant land plants: gametophyte rhizoids and sporophyte root axes. These structures carry out the rooting function in the free-living stage of almost all land plant gametophytes and sporophytes, respectively. Extant vascular plants develop a dominant, free-living sporophyte on which roots form, with the exception of a small number of taxa that have secondarily lost roots. However, fossil evidence indicates that early vascular plants did not develop sporophyte roots. We propose that the common ancestor of vascular plants developed a unique rooting system—rhizoidal sporophyte axes. Here we present a synthesis and reinterpretation of the rootless sporophytes of Horneophyton lignieri , Aglaophyton majus , Rhynia gwynne-vaughanii and Nothia aphylla preserved in the Rhynie chert. We show that the sporophyte rooting structures of all four plants comprised regions of plagiotropic (horizontal) axes that developed unicellular rhizoids on their underside. These regions of axes with rhizoids developed bilateral symmetry making them distinct from the other regions which were radially symmetrical. We hypothesize that rhizoidal sporophyte axes constituted the rooting structures in the common ancestor of vascular plants because the phylogenetic positions of these plants span the origin of the vascular lineage. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maria Dalgaard Mikkelsen ◽  
Jesper Harholt ◽  
Bjørge Westereng ◽  
David Domozych ◽  
Stephen C. Fry ◽  
...  

AbstractThe charophycean green algae (CGA or basal streptophytes) are of particular evolutionary significance because their ancestors gave rise to land plants. One outstanding feature of these algae is that their cell walls exhibit remarkable similarities to those of land plants. Xyloglucan (XyG) is a major structural component of the cell walls of most land plants and was originally thought to be absent in CGA. This study presents evidence that XyG evolved in the CGA. This is based on a) the identification of orthologs of the genetic machinery to produce XyG, b) the identification of XyG in a range of CGA and, c) the structural elucidation of XyG, including uronic acid-containing XyG, in selected CGA. Most notably, XyG fucosylation, a feature considered as a late evolutionary elaboration of the basic XyG structure and orthologs to the corresponding biosynthetic enzymes are shown to be present in Mesotaenium caldariorum.


Polar Record ◽  
2004 ◽  
Vol 40 (3) ◽  
pp. 235-243 ◽  
Author(s):  
J. Whinam ◽  
P.M. Selkirk ◽  
A.J. Downing ◽  
Bruce Hull

Buildings were constructed and artefacts left behind on sub-Antarctic Heard Island, associated with Antarctic research expeditions since 1926. Both bryophytes and vascular plants are colonising many parts of the now derelict buildings. On these structures and artefacts, the authors recorded four species of vascular plants out of the 11 that occur on Heard Island and nine species of mosses out of the 37 recorded from Heard Island. The vascular plant species most frequently recorded colonising structures and artefacts was Pringlea antiscorbutica (288 occurrences), with the area colonised varying from 0.3 cm2 to 430.0 cm2. Muelleriella crassifolia was the moss species that was most frequently recorded (14 occurrences), colonising areas from 2.1 cm2 to 12.9 cm2. The highest number of bryophyte species (seven) was recorded on the stone and cement of the ‘water tank.’ Pringlea antiscorbutica, Poa cookii, Azorella selago, Muelleriella crassifolia, Bryum dichotomum, Dicranoweisia brevipes and Schistidium apocarpum are all expected to continue to colonise the ANARE ruins, as well as areas that have become available since building removal and also possibly areas bared by further deglaciation.


2002 ◽  
Vol 38 (2) ◽  
pp. 237-240 ◽  
Author(s):  
Russell L. Chapman ◽  
Debra A. Waters
Keyword(s):  

Author(s):  
Étienne Balibar

This chapter outlines a structural interpretation of the Hegelian statement, “Tun aller und jeder,” or TAJ, and its function within Hegel's Phenomenology of Spirit, in order to pave the way for a better understanding of what at the heart of the “system,” and sometimes against it, constitutes the irreducible singularity of this work. At the same time the chapter also considers the debates surrounding interpretations of Hegel's work. The expression das Tun aller und jeder occurs at the end of Chapter V, Section C, §a (“The spiritual animal kingdom and deceit, or the 'matter in hand' itself”), and it is almost immediately taken up again in the Introduction to Chapter VI (“Spirit,” der Geist).


Urban Science ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 57 ◽  
Author(s):  
Ricardo Cruz de Carvalho ◽  
Zulema Varela ◽  
Teresa Afonso do Paço ◽  
Cristina Branquinho

Green roofs are important infrastructures to address the effects of climate change in urban areas. However, most studies and applications have been done in cooler and wetter regions of the northern hemisphere. Climate change will lead to more extreme weather events, such as increased drought and decreased precipitation with intense flash rain events. Increase desertification is expected especially in the Mediterranean Basin, where in summer, radiation and temperature are high and water is scarce. Therefore, while vascular plants increase water consumption in green roofs during warmer periods, mosses present themselves as potential candidates due to their poikilohydric nature, responding to the environmental availability of water, completely drying out and recovering upon rehydration. Although criteria for the selection of vascular plants adapted to the Mediterranean and suitable for green roofs have been developed, no information is available regarding the selection of mosses based on scientific criteria. Here we propose selection criteria for moss species based on ecological preferences according to Ellenberg’s values and help to define moss traits suitable for a nonirrigated, nature-based green roof that tolerates the Mediterranean climate. The main result is a table of potential candidate mosses that can be either used as standalone or in conjunction with vascular plants to decrease water usage and/or manage stormwater through an easily applicable selection methodology. For green roof practitioners, we proposed that acrocarpous mosses exhibiting turf/cushion life forms and colonist or perennial life strategies best fit the requirements for such a green infrastructure in extreme climate regions with scarce water resources.


Sign in / Sign up

Export Citation Format

Share Document