Eigenvalue analysis of size effect for cohesive crack model

1994 ◽  
Vol 66 (3) ◽  
pp. 213-226 ◽  
Author(s):  
Yuan-Neng Li ◽  
Zdeněk P. Bažant

2019 ◽  
Vol 215 ◽  
pp. 193-210 ◽  
Author(s):  
Christian Carloni ◽  
Gianluca Cusatis ◽  
Marco Salviato ◽  
Jia-Liang Le ◽  
Christian G. Hoover ◽  
...  


10.14311/608 ◽  
2004 ◽  
Vol 44 (5-6) ◽  
Author(s):  
Z. P. Bažant ◽  
Q. Yu

Presented is a concise summary of recent Northwestern University studies of six new problems. First, the decrease of fracture energy during crack propagation through a boundary layer, documented by Hu and Wittmann, is shown to be captured by a cohesive crack model in which the softening tail slope depends on the distance from the boundary (which causes an apparent size effect on fracture energy and implies that the nonlocal damage model is more fundamental than the cohesive crack model). Second, an improved universal size effect law giving a smooth transition between failures at large cracks (or notches) and at crack initiation is presented. Third, a recent renewed proposal that the nominal strength variation as a function of notch depth be used for measuring fracture energy is critically examined. Fourth, numerical results and a formula describing the size effect of finite-angle notches are presented. Fifth, a new size effect law derivation from dimensional analysis coupled with asymptotic matching is given. Finally, an improved code-type formula for shear capacity of R.C. beams is proposed. 







Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3573
Author(s):  
Hu Chen ◽  
Y. X. Zhang ◽  
Linpei Zhu ◽  
Fei Xiong ◽  
Jing Liu ◽  
...  

Numerical simulations of the fracture process are challenging, and the discrete element (DE) method is an effective means to model fracture problems. The DE model comprises the DE connective model and DE contact model, where the former is used for the representation of isotropic solids before cracks initiate, while the latter is employed to represent particulate materials after cracks propagate. In this paper, a DE particle-based cohesive crack model is developed to model the mixed-mode fracture process of brittle materials, aiming to simulate the material transition from a solid phase to a particulate phase. Because of the particle characteristics of the DE connective model, the cohesive crack model is constructed at inter-particle bonds in the connective stage of the model at a microscale. A potential formulation is adopted by the cohesive zone method, and a linear softening relation is employed by the traction–separation law upon fracture initiation. This particle-based cohesive crack model bridges the microscopic gap between the connective model and the contact model and, thus, is suitable to describe the material separation process from solids to particulates. The proposed model is validated by a number of standard fracture tests, and numerical results are found to be in good agreement with the analytical solutions. A notched concrete beam subjected to an impact loading is modeled, and the impact force obtained from the numerical modeling agrees better with the experimental result than that obtained from the finite element method.



Sign in / Sign up

Export Citation Format

Share Document