Nitrogen uptake and nitrogen harvest index in durum wheat cultivars varying in their grain protein concentration

Euphytica ◽  
1978 ◽  
Vol 27 (2) ◽  
pp. 561-566 ◽  
Author(s):  
R. M. Desai ◽  
C. R. Bhatia
2003 ◽  
Vol 140 (4) ◽  
pp. 395-407 ◽  
Author(s):  
R. E. RUSKE ◽  
M. J. GOODING ◽  
S. A. JONES

Field experiments were conducted over 3 years to assess the effect of a triazole fungicide programme, and additions of strobilurin fungicides to it, on nitrogen uptake, accumulation and partitioning in a range of winter wheat cultivars. Commensurate with delayed senescence, fungicide programmes, particularly when including strobilurins, improved grain yield through improvements in both crop biomass and harvest index, although the relationship with green area duration of the flag leaf (GFLAD) depended on year and in some cases, cultivar. In all years fungicide treatments significantly increased the amount of nitrogen in the above-ground biomass, the amount of nitrogen in the grain and the nitrogen harvest index. All these effects could be linearly related to the fungicide effect on GFLAD. These relationships occasionally interacted with cultivar but there was no evidence that fungicide mode of action affected the relationship between GFLAD and yield of nitrogen in the grain. Fungicide treatments significantly reduced the amount of soil mineral N at harvest and when severe disease had been controlled, the net remobilization of N from the vegetation to the grain after anthesis. Fungicide maintained the filling of grain with both dry matter and nitrogen. The proportionate accumulation of nitrogen in the grain was later than that of dry matter and this difference was greater when fungicide had been applied. Effects of fungicide on grain protein concentration and its relationship with GFLAD were inconsistent over year and cultivar. There were several instances where grain protein concentration was unaffected despite large (1·5 t/ha) increases in grain yield following fungicide use. Dilution of grain protein concentration following fungicide use, when it did occur, was small compared with what would be predicted by adoption of other yield increasing techniques such as the selection of high yielding cultivars (based on currently available cultivars) or by growing wheat in favourable climates.


Genome ◽  
1988 ◽  
Vol 30 (6) ◽  
pp. 857-864 ◽  
Author(s):  
A. L. McKendry ◽  
P. B. E. McVetty ◽  
L. E. Evans

The inheritance of grain protein concentration (GPC), grain protein yield (GPY), total nitrogen at maturity (TNM), nitrogen harvest index (NHI), grain yield (GY), total dry matter (TDM), and harvest index (HI) were studied in two spring wheat crosses, 'HY521/UM684' and 'HY521/Sinton' in 1985 at Winnipeg and Portage la Prairie, Manitoba. Analysis of variance of parental performance by location indicated that the parents differed significantly for all traits measured and that genotype by location interactions accounted for less than 8% of the observed variation. Generation means analyses indicated that all traits were primarily under genetic control in both crosses with additive gene action being significant for all traits studied. Dominance gene action was detected for all traits but the degree and direction was both trait and genotype specific. Additive × additive epistasis was significant for GPY, TNM, GY, and TDM, but again, was genotype specific. Variance analyses indicated a large genetic component of the variation relative to the environmental component for all traits studied. F2 broad sense heritabilities were moderately high for GPC (0.57–0.76), GPY (0.57–0.76), TNM (0.56–0.73), NHI (0.39–0.59), GY (0.51–0.70), TDM (0.65–0.79) and HI (0.50–0.67). Narrow sense heritabilities were moderately high for GPC (0.50–0.75) and HI (0.49–0.58) but were somewhat lower for GPY (0.26–0.48), TNM (0.27–0.38), NHI (0.24–0.38), GY (0.27–0.39) and TDM (0.32–0.65). Implications of the results of this study on breeding for simultaneous improvement in GPC and GY are discussed.Key words: bread wheat, heritability, grain protein yield, total nitrogen at maturity, nitrogen harvest index, total dry matter, harvest index, breeding strategies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rachana Poudel ◽  
Fatema Bhinderwala ◽  
Martha Morton ◽  
Robert Powers ◽  
Devin J. Rose

AbstractTo determine changes in the grain components between historical and modern wheat (Triticum aestivum L.) cultivars, wholemeal flours from 19 wheat cultivars and 2 landraces released or introduced between 1870 and 2013 and grown over two crop years were extracted using hydroalcoholic solution and analyzed using one dimensional 1H NMR spectral profiling. Grain yield, grain volume weight (GVW), and grain protein concentration were also measured. Grain yield increased while protein concentration decreased by release year (p < 0.001). Increasing trends (p < 0.01) were observed for tryptophan, sum of the measured amino acids, chlorogenic acid, ferulic acid, vanillic acid, and sum of the measured phenolic acids. Grain yield, phenolic acids, and tryptophan were mainly associated with modern cultivars, whereas grain protein concentration and GVW were associated with historical cultivars. The findings from this study showed changes in concentration of grain components over a century of breeding that may have implications for grain quality and human health.


2009 ◽  
Vol 89 (4) ◽  
pp. 601-612 ◽  
Author(s):  
F R Clarke ◽  
J M Clarke ◽  
C J Pozniak ◽  
R E Knox ◽  
T N McCaig

Grain protein concentration is important in the determination of the value of durum wheat (Triticum turgidum L. var. durum) for pasta manufacture. This study was undertaken to investigate the heritability and inheritance of protein concentration in seven genetically diverse durum populations, and to determine if the precision of this information could be improved by adjustment for micro-environmental trends. Grain protein and grain yield were measured at multiple locations and years. The Papadakis method was used to adjust for environmental trends in these replicated trials, and the moving mean was used for confimation in a sample of 19 un-replicated breeding trials. Environmental trends were substantial, and trend adjustment improved both correlations among locations and precision. Consequently, trend adjustment may be useful for genetic studies to improve trial precision, but would be of questionable merit in early-generation breeding trials due to the cost of additional protein measurements and marginal improvement in selection response. Grain yield was negatively correlated with grain protein concentration in all trials. Protein concentration was moderately heritable and complexly inherited in these populations, with the number of estimated effective factors ranging from 5 to 17 for the majority of trials. The complexity of inheritance and interactions of protein with yield and environment makes early-generation selection for protein difficult.Key words: Grain protein concentration, heritability, inheritance, semi-dwarf


2013 ◽  
Vol 93 (2) ◽  
pp. 223-228 ◽  
Author(s):  
R. E. Karamanos ◽  
J. T. Harapiak ◽  
N. A. Flore

Karamanos, R. E., Harapiak, J. T. and Flore N. A. 2013. Sulphur application does not improve wheat yield and protein concentration. Can. J. Soil Sci. 93: 223–228. Grain protein plays an important role in the milling and baking quality of wheat (Triticum aestivum). The question is whether application of sulphur, an important constituent of proteins and amino acids, impacts wheat grain protein concentration. A 3-yr 10-site experiment was set up to determine if of sulphur (S) fertilization (0 and 25 kg S ha−1) affects Canada west red spring (CWRS) and Durum grain yield and protein levels, when combined with various rates of nitrogen (N) fertilizer (0, 40, 60, 80 and 100 kg N ha−1). Soils at the 10 sites varied from S deficient to S sufficient, based on criteria in western Canada. Application of 25 kg S ha−1 resulted in no yield or grain protein concentration increases, regardless of the level of N fertilizer applied or the level of soil “available” S (0–30 cm). However, high N fertilizer rates (80 and 100 kg N ha−1) plus S fertilization improved yield and protein concentration when growing season (May, June, July) precipitation was favourable for CWRS and Durum wheat. In conclusion, we suggest that indiscriminate application of S fertilizer will not increase protein concentration for CWRS and Durum wheat grain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuefeng Ruan ◽  
Bianyun Yu ◽  
Ron E. Knox ◽  
Wentao Zhang ◽  
Asheesh K. Singh ◽  
...  

Grain protein concentration (GPC) is an important trait in durum cultivar development as a major determinant of the nutritional value of grain and end-use product quality. However, it is challenging to simultaneously select both GPC and grain yield (GY) due to the negative correlation between them. To characterize quantitative trait loci (QTL) for GPC and understand the genetic relationship between GPC and GY in Canadian durum wheat, we performed both traditional and conditional QTL mapping using a doubled haploid (DH) population of 162 lines derived from Pelissier × Strongfield. The population was grown in the field over 5 years and GPC was measured. QTL contributing to GPC were detected on chromosome 1B, 2B, 3A, 5B, 7A, and 7B using traditional mapping. One major QTL on 3A (QGpc.spa-3A.3) was consistently detected over 3 years accounting for 9.4–18.1% of the phenotypic variance, with the favorable allele derived from Pelissier. Another major QTL on 7A (QGpc.spa-7A) detected in 3 years explained 6.9–14.8% of the phenotypic variance, with the beneficial allele derived from Strongfield. Comparison of the QTL described here with the results previously reported led to the identification of one novel major QTL on 3A (QGpc.spa-3A.3) and five novel minor QTL on 1B, 2B and 3A. Four QTL were common between traditional and conditional mapping, with QGpc.spa-3A.3 and QGpc.spa-7A detected in multiple environments. The QTL identified by conditional mapping were independent or partially independent of GY, making them of great importance for development of high GPC and high yielding durum.


Sign in / Sign up

Export Citation Format

Share Document