Sulphur application does not improve wheat yield and protein concentration

2013 ◽  
Vol 93 (2) ◽  
pp. 223-228 ◽  
Author(s):  
R. E. Karamanos ◽  
J. T. Harapiak ◽  
N. A. Flore

Karamanos, R. E., Harapiak, J. T. and Flore N. A. 2013. Sulphur application does not improve wheat yield and protein concentration. Can. J. Soil Sci. 93: 223–228. Grain protein plays an important role in the milling and baking quality of wheat (Triticum aestivum). The question is whether application of sulphur, an important constituent of proteins and amino acids, impacts wheat grain protein concentration. A 3-yr 10-site experiment was set up to determine if of sulphur (S) fertilization (0 and 25 kg S ha−1) affects Canada west red spring (CWRS) and Durum grain yield and protein levels, when combined with various rates of nitrogen (N) fertilizer (0, 40, 60, 80 and 100 kg N ha−1). Soils at the 10 sites varied from S deficient to S sufficient, based on criteria in western Canada. Application of 25 kg S ha−1 resulted in no yield or grain protein concentration increases, regardless of the level of N fertilizer applied or the level of soil “available” S (0–30 cm). However, high N fertilizer rates (80 and 100 kg N ha−1) plus S fertilization improved yield and protein concentration when growing season (May, June, July) precipitation was favourable for CWRS and Durum wheat. In conclusion, we suggest that indiscriminate application of S fertilizer will not increase protein concentration for CWRS and Durum wheat grain.

1996 ◽  
Vol 36 (4) ◽  
pp. 443 ◽  
Author(s):  
MG Mason ◽  
RW Madin

Field trials at Beverley (19911, Salmon Gums (1991; 2 sites) and Merredin (1992; 2 sites), each with 5 rates of nitrogen (N) and 3 levels of weed control, were used to investigate the effect of weeds and N on wheat grain yield and protein concentration during 1991 and 1992. Weeds in the study were grasses (G) and broadleaf (BL). Weeds reduced both vegetative dry matter yield and grain yield of wheat at all sites except for dry matter at Merredin (BL). Nitrogen fertiliser increased wheat dry matter yield at all sites. Nitrogen increased wheat grain yield at Beverley and Merredin (BL), but decreased yield at both Salmon Gums sites in 1991. Nitrogen fertiliser increased grain protein concentration at all 5 sites-at all rates for 3 sites [Salmon Gums (G) and (BL) and Merredin (G)] and at rates of 69 kg N/ha or more at the other 2 sites [Beverley and Merredin (BL)]. However, the effect of weeds on grain protein varied across sites. At Merredin (G) protein concentration was higher where there was no weed control, possibly due to competition for soil moisture by the greater weed burden. At Salmon Gums (G), grain protein concentration was greater when weeds were controlled than in the presence of weeds, probably due to competition for N between crop and weeds. In the other 3 trials, there was no effect of weeds on grain protein. The effect of weeds on grain protein appears complex and depends on competition between crop and weeds for N and for water at the end of the season, and the interaction between the two.


1981 ◽  
Vol 21 (111) ◽  
pp. 424 ◽  
Author(s):  
WM Strong

Eighteen fertilizer trials, each with five levels of nitrogen (N) and three levels of phosphorus (PI, were conducted on black earth soils of the Darling Downs to establish optimal economic rates of N fertilizer in commercial, irrigated wheat crops. The optimal economic rate of N with a fertilizer: wheat price ratio (kg N: kg grain) of 5:l, the yield response of 100 kg/ha of applied N, the yield without fertilizer, and the yield with fertilizer not limiting were calculated from derived yield response relations at each site. A multi-variate regression procedure was used to determine which soil or crop management factors significantly influenced the rate of N needed to optimize wheat yield. Delay in planting after June 1 and the level of residual mineral N in the soil at planting had strong negative effects on the response to fertilizer and the optimal rate of fertilizer required. The results indicate that yields of irrigated wheat may be below the economic optimum because of sub-optimal applications of N. Other soil and management factors such as available soil P and number of irrigations also affected grain yield. At 1 3 sites low protein wheat (< 1 1.4�1~) was produced with all but the highest two rates of N fertilizer and at two sites even the highest rate produced low protein wheat. The effect of N fertilizer applied at planting on grain protein concentration was changed by the yield response to the fertilizer application. Grain protein concentration was curvilinearly related (R2 = 0.81) to relative grain yield (yield as a proportion of the maximum yield); grain protein was at its minimum at a relative yield of 0.5. Although heavy rates of N fertilizer at planting increased grain protein concentration on a few sites, usually these applications led to an inefficient use of N fertilizer; apparent incorporation of fertilizer N into grain decreased with increasing rate of fertilizer.


2001 ◽  
Vol 81 (3) ◽  
pp. 373-383 ◽  
Author(s):  
G. P. Lafond ◽  
Y. T. Gan ◽  
A. M. Johnston ◽  
D. Domitruk ◽  
F. C. Stevenson ◽  
...  

The recent advances in no-till seeding technology are providing new N management options for crop production on the prairies. The objectives of this study were to evaluate the potential interaction between P and N fertilizer on winter wheat production in a one-pass seeding and fertilizing system and to determine the feasibility of side-banding all N requirements using urea or anhydrous ammonia at planting as compared with the current practice of broadcasting ammonium nitrate early in the spring. Three forms of N fertilizer (urea, anhydrous ammonia, ammonium nitrate), three rates of N (50, 75 and 100 kg ha–1) and three rates of P (0, 9 and 17 kg P ha–1) were investigated. Urea and anhydrous ammonia were applied during the seeding operation, whereas ammonium nitrate was broadcast the following spring. Applying P fertilizer to the side and below the seed at planting with rates > 9 kg Pha–1 increased grain yield in 3 out of 6 site-years when ammonium nitrate was broadcast early in the spring. The positive yield response to P corresponded to soil test levels of 24 kg P ha–1. With soil test levels greater than 34 kg P ha–1, grain yield response to P fertilizer was not observed. When urea was banded at planting, together with P fertilizer, the yield increases with the increased P rates was shown only in 1 out of 6 site-years. At 5 of th e 6 site-years, grain protein concentration was not affected by P fertilizer; while for 1 site-year, the high rate of P fertilization decreased grain protein concentration. Responses of total grain N and P yields to P fertilization were parallel to the corresponding responses of P fertilization to grain yield, and were rarely associated with N or P concentrations in the grain. Applying N fertilizer at rates of 50 to 100 kg N ha–1 increased winter wheat grain yields by 3 to 8% in 3 out of 6 site-years. The high N rates increased grain protein concentrations in all 6 site-years. Grain protein concentration was 6% greater with N fertilizer applied as ammonium nitrate in early spring than when banding urea or anhydrous ammonia at planting. More consistent improvements in grain yield and grain protein concentration were obtained when the N fertilizer was applied as ammonium nitrate in the spring. Further research is required to determine the benefits of applying some of the crop’s N fertilizer requirements at planting, to reduce the risks of N stresses when the spring application is delayed because of adverse weather or soil conditions. Key words: Ammonium nitrate, anhydrous ammonia, grain yield, nitrogen timing, phosphorus, protein, urea


2009 ◽  
Vol 89 (4) ◽  
pp. 601-612 ◽  
Author(s):  
F R Clarke ◽  
J M Clarke ◽  
C J Pozniak ◽  
R E Knox ◽  
T N McCaig

Grain protein concentration is important in the determination of the value of durum wheat (Triticum turgidum L. var. durum) for pasta manufacture. This study was undertaken to investigate the heritability and inheritance of protein concentration in seven genetically diverse durum populations, and to determine if the precision of this information could be improved by adjustment for micro-environmental trends. Grain protein and grain yield were measured at multiple locations and years. The Papadakis method was used to adjust for environmental trends in these replicated trials, and the moving mean was used for confimation in a sample of 19 un-replicated breeding trials. Environmental trends were substantial, and trend adjustment improved both correlations among locations and precision. Consequently, trend adjustment may be useful for genetic studies to improve trial precision, but would be of questionable merit in early-generation breeding trials due to the cost of additional protein measurements and marginal improvement in selection response. Grain yield was negatively correlated with grain protein concentration in all trials. Protein concentration was moderately heritable and complexly inherited in these populations, with the number of estimated effective factors ranging from 5 to 17 for the majority of trials. The complexity of inheritance and interactions of protein with yield and environment makes early-generation selection for protein difficult.Key words: Grain protein concentration, heritability, inheritance, semi-dwarf


2006 ◽  
Vol 86 (3) ◽  
pp. 565-572 ◽  
Author(s):  
R H McKenzie ◽  
E. Bremer ◽  
C A Grant ◽  
A M Johnston ◽  
J. DeMulder ◽  
...  

Due to the price premium for high-protein wheat (Triticum aestivum L.), many producers are interested in the efficacy of in-crop application of low rates of N fertilizer for increasing grain protein concentration (GPC). We conducted field studies at 26 site-years in Alberta, Saskatchewan and Manitoba from 1998 to 2000 to determine if in-crop application (tillering, boot stage or anthesis) of N fertilizer [broadcast ammonium nitrate (AN) or foliar urea-ammonium-nitrate solution (UAN); 15 kg N ha-1] could economically increase GPC of a Canada Western Red Spring (CWRS) wheat cultivar (AC Barrie). Basal N fertilizer rates were 60 and 120 kg N ha-1. The average increase in GPC due to in-crop N application was 3 g kg-1. The increase in GPC was similar at basal N rates of 60 and 120 kg N ha-1. Broadcast AN and foliar-applied UAN were generally equally effective at increasing GPC, but were not more effective than application at the time of seeding. Late application tended to increase GPC more effectively than early application. The increase in GPC due to application of in-crop N was not economic at most sites in this study, but might be greater if applied under more N deficient conditions. Key words: Split N application, foliar, timing


1997 ◽  
Vol 37 (3) ◽  
pp. 351 ◽  
Author(s):  
R. C. Dalal ◽  
W. M. Strong ◽  
E. J. Weston ◽  
J. E. Cooper ◽  
G. A. Thomas

Summary. In many subtropical environments, cereal crops develop and mature largely on residual water in the soil. This research involves evaluation of the impact of plant available nitrogen (N) and water in soil at sowing on grain protein in wheat and barley in such a subtropical environment. Estimates of grain protein concentration of wheat (cv. Hartog) were made using plant available water and available N (soil nitrate-N and fertiliser N, where applied) at sowing using data obtained from an experiment conducted at Warra, Queensland, from 1987 to 1995. Treatments included: grass + legume leys of 4-year duration followed by continuous wheat with 0 or 50 kg N/ha.year applied as urea at sowing; 2-year rotation of lucerne and wheat; 2-year rotation of annual medics and wheat; 2-year rotation of chickpea and wheat, no-tillage wheat; and conventional tillage wheat. Fertiliser N as urea was applied to both no-tillage wheat and conventional tillage wheat at 0, 25 and 75 kg N/ha.year. The conventional tillage wheat also received N at 12.5 and 50 kg N/ha.year. Estimates of wheat grain yield required both rainfall during the fallow period or plant available water in the soil profile at sowing and rainfall from sowing to anthesis and, therefore, it could not be predicted precisely at sowing. Increasing plant available water (mm) in soil at sowing linearly reduced grain protein. In comparison, available N at sowing increased grain protein curvilinearly from 10.0% at 50 kg N/ha to 14.5% at 200 kg N/ha (0–120 cm depth). Variation in grain protein concentration was best accounted for by the available water : available N ratio at 0–90, 0–120 or 0–150 cm depths. The protein concentrations of wheat (cv. Hartog) grown in 1996 at Warra and Nindigully, and wheat (cv. Cunningham) grown from 1991 to 1995 at Billa Billa, and barley (cv. Tallon) grown in 1996 at Nindigully and Formartin, Queensland, were successfully predicted using the relationship between the available water : available N ratio and wheat grain protein concentration developed using data from Warra during 1987–95. Thus, available water should be matched by N supply at sowing to ensure the production of Prime Hard grade wheat and malting grade barley in the subtropical environment. As a ‘rule of thumb’, for 0–120 cm depth of soil sampling, each millilitre of available water matched with each kilogram of N per hectare of available N, at sowing, would produce about 13% protein wheat in this semi-arid region. It requires only 0.5 kg of N/ha for each millilitre of available water in 0–120 cm depth of soil to produce malting grade barley of about 10.5% protein concentration. Available water in soil at sowing can be approximated with rainfall during the fallow period, with rainfall (mm) : available N (kg/ha for 0–120 cm depth) ratios of 3.7 and 7.4 for respective 13 and 10.5% grain protein concentrations for both wheat and barley.


Sign in / Sign up

Export Citation Format

Share Document