grain protein concentration
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 18)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Padmavati G. Gore ◽  
Arpita Das ◽  
Rakesh Bhardwaj ◽  
Kuldeep Tripathi ◽  
Aditya Pratap ◽  
...  

Micronutrient malnutrition or hidden hunger is a serious challenge toward societal well-being. Vigna stipulacea (Lam.) Kuntz (known locally as Minni payaru), is an underutilized legume that has the potential to be a global food legume due to its rich nutrient profile. In the present study, 99 accessions of V. stipulacea were tested for iron (Fe), zinc (Zn), calcium (Ca), protein, and phytate concentrations over two locations for appraisal of stable nutrient-rich sources. Analysis of variance revealed significant effects of genotype for all the traits over both locations. Fe concentration ranged from 29.35–130.96 mg kg–1 whereas Zn concentration ranged from 19.44 to 74.20 mg kg–1 across both locations. The highest grain Ca concentration was 251.50 mg kg–1 whereas the highest grain protein concentration was recorded as 25.73%. In the case of grain phytate concentration, a genotype with the lowest value is desirable. IC622867 (G-99) was the lowest phytate containing accession at both locations. All the studied traits revealed highly significant genotypic variances and highly significant genotype × location interaction though less in magnitude than the genotypic variance. GGE Biplot analysis detected that, for grain Fe, Zn, and Ca concentration the ‘ideal’ genotypes were IC331457 (G-75), IC331610 (G-76), and IC553564 (G-60), respectively, whereas for grain protein concentration IC553521 (G-27) was the most “ideal type.” For phytate concentration, IC351407 (G-95) and IC550523 (G-99) were considered as ‘ideal’ and ‘desirable,’ respectively. Based on the desirability index, Location 1 (Kanpur) was identified as ideal for Fe, Zn, Ca, and phytate, and for grain protein concentration, Location 2 (New Delhi) was the ideal type. A significant positive correlation was detected between grain Fe as well as grain Zn and protein concentration considering the pooled analysis over both the locations where as a significant negative association was observed between phytate and protein concentration over the locations. This study has identified useful donors and enhanced our knowledge toward the development of biofortified Vigna cultivars. Promoting domestication of this nutrient-rich semi-domesticated, underutilized species will boost sustainable agriculture and will contribute toward alleviating hidden hunger.


2021 ◽  
Vol 11 (21) ◽  
pp. 9782
Author(s):  
Azin Rekowski ◽  
Monika A. Wimmer ◽  
Sirous Tahmasebi ◽  
Markus Dier ◽  
Sarah Kalmbach ◽  
...  

Drought stress is playing an increasingly important role in crop production due to climate change. To investigate the effects of drought stress on protein quantity and quality of wheat, two Iranian (Alvand, Mihan) and four German (Impression, Discus, Rumor, Hybery) winter wheat genotypes, representing different quality classes and grain protein levels, were grown under field conditions in Eqlid (Iran) during the 2018–2019 growing season. Drought stress was initiated by interrupting field irrigation during the anthesis phase at two different stress levels. Drought stress at anthesis did not significantly change total grain protein concentration in any of the wheat genotypes. Similarly, concentrations of grain storage protein sub-fractions of albumin/globulin, gliadin and glutenin were unaltered in five of the six genotypes. However, analysis of protein sub-fractions by SDS polyacrylamide gel electrophoresis revealed a consistent significant increase in ω-gliadins with increasing drought stress. Higher levels of HMW glutenins and a reduction in LMW-C glutenins were observed exclusively under severe drought stress in German genotypes. The drought-induced compositional change correlated positively with the specific bread volume, and was mainly associated with an increase in ω-gliadins and with a slight increase in HMW glutenins. Despite the generally lower HMW glutenin concentrations of the Iranian genotypes and no effect of drought on the concentration of HMW sub-fraction, there was still high specific bread volume under drought. It is suggested that for the development of new wheat cultivars adapted to these challenging climatic conditions, the protein composition should be considered in addition to the yield and grain protein concentration.


2021 ◽  
Vol 270 ◽  
pp. 108203
Author(s):  
Lachlan Lake ◽  
Diego Godoy Kutchartt ◽  
Daniel F. Calderini ◽  
Victor O. Sadras

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuefeng Ruan ◽  
Bianyun Yu ◽  
Ron E. Knox ◽  
Wentao Zhang ◽  
Asheesh K. Singh ◽  
...  

Grain protein concentration (GPC) is an important trait in durum cultivar development as a major determinant of the nutritional value of grain and end-use product quality. However, it is challenging to simultaneously select both GPC and grain yield (GY) due to the negative correlation between them. To characterize quantitative trait loci (QTL) for GPC and understand the genetic relationship between GPC and GY in Canadian durum wheat, we performed both traditional and conditional QTL mapping using a doubled haploid (DH) population of 162 lines derived from Pelissier × Strongfield. The population was grown in the field over 5 years and GPC was measured. QTL contributing to GPC were detected on chromosome 1B, 2B, 3A, 5B, 7A, and 7B using traditional mapping. One major QTL on 3A (QGpc.spa-3A.3) was consistently detected over 3 years accounting for 9.4–18.1% of the phenotypic variance, with the favorable allele derived from Pelissier. Another major QTL on 7A (QGpc.spa-7A) detected in 3 years explained 6.9–14.8% of the phenotypic variance, with the beneficial allele derived from Strongfield. Comparison of the QTL described here with the results previously reported led to the identification of one novel major QTL on 3A (QGpc.spa-3A.3) and five novel minor QTL on 1B, 2B and 3A. Four QTL were common between traditional and conditional mapping, with QGpc.spa-3A.3 and QGpc.spa-7A detected in multiple environments. The QTL identified by conditional mapping were independent or partially independent of GY, making them of great importance for development of high GPC and high yielding durum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rachana Poudel ◽  
Fatema Bhinderwala ◽  
Martha Morton ◽  
Robert Powers ◽  
Devin J. Rose

AbstractTo determine changes in the grain components between historical and modern wheat (Triticum aestivum L.) cultivars, wholemeal flours from 19 wheat cultivars and 2 landraces released or introduced between 1870 and 2013 and grown over two crop years were extracted using hydroalcoholic solution and analyzed using one dimensional 1H NMR spectral profiling. Grain yield, grain volume weight (GVW), and grain protein concentration were also measured. Grain yield increased while protein concentration decreased by release year (p < 0.001). Increasing trends (p < 0.01) were observed for tryptophan, sum of the measured amino acids, chlorogenic acid, ferulic acid, vanillic acid, and sum of the measured phenolic acids. Grain yield, phenolic acids, and tryptophan were mainly associated with modern cultivars, whereas grain protein concentration and GVW were associated with historical cultivars. The findings from this study showed changes in concentration of grain components over a century of breeding that may have implications for grain quality and human health.


Author(s):  
Maya Subedi ◽  
Hector Carcamo ◽  
Janet Knodel ◽  
David Weaver ◽  
Richard Cuthbert ◽  
...  

The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a major pest of wheat (Triticum aestivum L.) in the northern Great Plains where it is a constant threat in Montana and is resurging in Alberta, Saskatchewan and North Dakota. Adoption of solid-stemmed cultivars is an important management tool for wheat growers; however, the inconsistent pith expression first noted with the release of ‘Rescue’ has been repeatedly observed in modern cultivars such as ‘Lillian’ in Canada. Given the extensive hectares planted to solid-stemmed wheat cultivars during an outbreak, identification of cultivars that display stable stem solidness, grain yield and grain protein concentration across a wide range of environments where stem sawfly infestations occur is desirable. We assessed spring wheat plant responses in eight solid-stemmed and two hollow-stemmed genotypes grown across diverse environments using multiple statistical models. Study sites included southern Alberta and Saskatchewan, Montana and North Dakota. Most models agreed that the genotypes, ‘Choteau’ ‘BW925’ and ‘Mott’ consistently displayed high and stable stem solidness concomitant with high grain yield. ‘Choteau’ and ‘BW925’ also consistently met or exceeded the desired threshold of a 3.75/5 pith rating (averaged from the lower four stem internodes) for optimum resistance whereas, ‘Mott’ developed optimal pith at a specific (early) phenological stage when resistance to WSS infestation is critical. Exploring stability of stem solidness identified ideal genotypes that would enhance germplasm development efforts, which exemplifies how this approach can facilitate the selection, production, and adoption of solid-stemmed wheat cultivars in regions prone to WSS attack.


2020 ◽  
Vol 11 ◽  
Author(s):  
Shuoran Liu ◽  
Shuai Cui ◽  
Xue Zhang ◽  
Yin Wang ◽  
Guohua Mi ◽  
...  

As a primary food crop, maize is widely grown around the world. However, the deficiency of essential amino acids, such as lysine, tryptophan, and methionine, results in poor nutritional quality of maize. In addition, the protein concentration of maize declines with the increase in yield, which further reduces the nutritional quality. Here, the photosynthesis of leaves, grain amino acid composition, and stoichiometry of N and S are explored. The results show that N and S maintained the redox balance by increasing the content of glutathione in maize leaves, thereby enhancing the photosynthetic rate and maize yield. Simultaneously, the synergy of N and S increased the grain protein concentration and promoted amino acid balance by increasing the cysteine concentration in maize grains. The maize yield, grain protein concentration, and concentration of essential amino acids, such as lysine, tryptophan, and methionine, could be simultaneously increased in the N:S ratio range of 11.0 to 12.0. Overall, the synergy of N and S simultaneously improved the maize yield and nutritional quality by regulating the redox balance of maize leaves and the amino acids balance of grains, which provides a new theoretical basis and practical method for sustainable production of maize.


Sign in / Sign up

Export Citation Format

Share Document