Experimental determination of the equation of state of solid hydrogen and deuterium at high pressures

1979 ◽  
Vol 34 (3-4) ◽  
pp. 255-305 ◽  
Author(s):  
A. Driessen ◽  
J. A. de Waal ◽  
Isaac F. Silvera
Author(s):  
D. E. Lea

The columnar theory developed by Jaffé to account for the recombination of ions in alpha particle tracks is extended to beta rays by taking account of the clusters of secondary ionisation. Reasonable agreement is obtained with experiment. Recombination in proton tracks produced in hydrogen by neutrons is shown to be in agreement with the columnar theory, but in the case of nitrogen nuclear tracks in nitrogen the recombination is only a hundredth of that predicted by the theory. An explanation of this effect is advanced, and it is suggested that recombination is likely to be abnormally small for all heavy nuclei of velocities not exceeding 5 × 108 cm. per sec.An experimental determination of the coefficient of recombination of ions in nitrogen and hydrogen at pressures of 20, 40 and 90 atmospheres is reported.My thanks are due to Dr Chadwick for interest in this work, and to Dr Gray and Dr Tarrant for advice on the experimental technique of high pressure ionisation measurements. I am indebted also to the Department of Scientific and Industrial Research for a maintenance grant.


Author(s):  
Andris Rambaks ◽  
Katharina Schmitz

Abstract A manometric-volumetric method to determine the Bunsen absorption coefficient of hydraulic fluids at high-pressures is presented. The virial equation of state is used to determine the amount of substance and its composition in the gaseous phase and at high-pressures. An error-analysis is presented for a best-case error estimate of the method.


2008 ◽  
Vol 41 (5) ◽  
pp. 886-896 ◽  
Author(s):  
Ian G. Wood ◽  
Lidunka Vočadlo ◽  
David P. Dobson ◽  
G. David Price ◽  
A. D. Fortes ◽  
...  

The ability to perform neutron diffraction studies at simultaneous high pressures and high temperatures is a relatively recent development. The suitability of this technique for determiningP–V–Tequations of state has been investigated by measuring the lattice parameters of Mg1−xFexO (x= 0.2, 0.3, 0.4), in the rangeP < 10.3 GPa and 300 <T< 986 K, by time-of-flight neutron powder diffraction. Pressures were determined using metallic Fe as a marker and temperatures were measured by neutron absorption resonance radiography. Within the resolution of the experiment, no evidence was found for any change in the temperature derivative of the isothermal incompressibility, ∂KT/∂T, with composition. By assuming that the equation-of-state parameters either varied linearly or were invariant with composition, the 60 measured state points were fitted simultaneously to aP–V–T–xequation of state, leading to values of ∂KT/∂T= −0.024 (9) GPa K−1and of the isothermal Anderson–Grüneisen parameter δT= 4.0 (16) at 300 K. Two designs of simultaneous high-P/Tcell were employed during this study. It appears that, by virtue of its extended pressure range, a design using toroidal gaskets is more suitable for equation-of-state studies than is the system described by Le Godec, Dove, Francis, Kohn, Marshall, Pawley, Price, Redfern, Rhodes, Ross, Schofield, Schooneveld, Syfosse, Tucker & Welch [Mineral. Mag.(2001),65, 737–748].


Sign in / Sign up

Export Citation Format

Share Document