A comparison of computed and observed line profiles and flash intensities in the photosphere-chromosphere transition region

Solar Physics ◽  
1970 ◽  
Vol 15 (2) ◽  
pp. 322-337 ◽  
Author(s):  
E. L. J. Van Dessel
1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


1989 ◽  
Vol 104 (2) ◽  
pp. 231-234
Author(s):  
Chung-Chieh Cheng ◽  
K.G. Widing

AbstractWe studied the unique EUV spectra of the 21 Jan. 1974 flare observed by the NRL Normal-Incidence Slit Spectrometer (SO 82B) onboard the Skylab. The results show that the pre-impulsive transition region plasmas exhibited enhanced turbulence and heating before the acceleration of energetic particles. The absence of blue-shifted components in the Fe XXI line profiles shows that the chromospheric evaporation is not important in this flare.


1980 ◽  
Vol 91 ◽  
pp. 375-378
Author(s):  
Gary J. Rottman

A recent sounding rocket experiment has provided high spectral resolution line profiles across the solar disk. The objective of this experiment is to provide information on the systematic velocity fields at the base of the corona by observing the displacement, width and shape of EUV emission lines.


2019 ◽  
Vol 627 ◽  
pp. A46 ◽  
Author(s):  
Souvik Bose ◽  
Vasco M. J. Henriques ◽  
Luc Rouppe van der Voort ◽  
Tiago M. D. Pereira

Context. The solar chromosphere and the lower transition region are believed to play a crucial role in the heating of the solar corona. Models that describe the chromosphere (and the lower transition region), accounting for its highly dynamic and structured character are, so far, found to be lacking. This is partly due to the breakdown of complete frequency redistribution (CRD) in the chromospheric layers and also because of the difficulty in obtaining complete sets of observations that adequately constrain the solar atmosphere at all relevant heights. Aims. We aim to obtain semi-empirical model atmospheres that reproduce the features of the Mg II h&k line profiles that sample the middle chromosphere with focus on a sunspot. Methods. We used spectropolarimetric observations of the Ca II 8542 Å spectra obtained with the Swedish 1 m Solar Telescope and used NICOLE inversions to obtain semi-empirical model atmospheres for different features in and around a sunspot. These were used to synthesize Mg II h&k spectra using the RH1.5D code, which we compared with observations taken with the Interface Region Imaging Spectrograph (IRIS). Results. Comparison of the synthetic profiles with IRIS observations reveals that there are several areas, especially in the penumbra of the sunspot, where most of the observed Mg II h&k profiles are very well reproduced. In addition, we find that supersonic hot down-flows, present in our collection of models in the umbra, lead to synthetic profiles that agree well with the IRIS Mg II h&k profiles, with the exception of the line core. Conclusions. We put forward and make available four semi-empirical model atmospheres. Two for the penumbra, reflecting the range of temperatures obtained for the chromosphere, one for umbral flashes, and a model representative of the quiet surroundings of a sunspot.


1997 ◽  
Vol 478 (2) ◽  
pp. 745-765 ◽  
Author(s):  
Brian E. Wood ◽  
Jeffrey L. Linsky ◽  
Thomas R. Ayres

2017 ◽  
Vol 842 (1) ◽  
pp. 19 ◽  
Author(s):  
Jaroslav Dudík ◽  
Vanessa Polito ◽  
Elena Dzifčáková ◽  
Giulio Del Zanna ◽  
Paola Testa

1994 ◽  
Vol 144 ◽  
pp. 421-426
Author(s):  
N. F. Tyagun

AbstractThe interrelationship of half-widths and intensities for the red, green and yellow lines is considered. This is a direct relationship for the green and yellow line and an inverse one for the red line. The difference in the relationships of half-widths and intensities for different lines appears to be due to substantially dissimilar structuring and to a set of line-of-sight motions in ”hot“ and ”cold“ corona regions.When diagnosing the coronal plasma, one cannot neglect the filling factor - each line has such a factor of its own.


1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


1984 ◽  
Vol 9 (4) ◽  
pp. 697-704 ◽  
Author(s):  
C. Stehlé ◽  
N. Feautrier
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document