scholarly journals Alfalfa (Medicago sativa L.) water use efficiency as affected by harvest traffic and soil compaction in a sandy loam soil

1991 ◽  
Vol 12 (2) ◽  
Author(s):  
E.A. Rechel ◽  
W.R. DeTar ◽  
B.D. Meek ◽  
L.M. Carter
1977 ◽  
Vol 88 (3) ◽  
pp. 591-595 ◽  
Author(s):  
Ranjodh Singh ◽  
R. K. Chadha ◽  
H. N. Verma ◽  
Yadvinder Singh

SUMMARYEffects of phosphorus fertilizer, initial profile water storage and seasonal rainfall on yield and water use by dryland wheat on loamy-sand and sandy-loam soils were studied for a 2-year period (1973–5). Plant available water at seeding varied from 62 to 205 mm, seasonal rainfall varied from 62 to 154 mm and available P status ranged from 9·5 to 18·5 kg P/ha. Four rates of phosphorus 0, 15, 30 and 45 kg P2O5/ha were tested. Available water at seeding, seasonal precipitation and the available P status of soil determined the yield response to phosphorus fertilizer. Response to P application was observed up to 15 kg and 30 kg P2O5/ha in loamy-sand and sandy-loam soils respectively. Growth and yield of wheat were highly correlated with the available water at planting plus seasonal rainfall. Total water use did not change in loamy-sand soil, but it increased by 16 mm in sandy-loam soil with the application of phosphorus. The profile water depletion pattern, further, indicates that the fertilized crop used more water from layers below 135 cm in loamy-sand and 22·5 cm in sandy-loam soil.


1980 ◽  
Vol 72 (3) ◽  
pp. 499-502 ◽  
Author(s):  
N. T. Singh ◽  
M. S. Patel ◽  
Rachhpal Singh ◽  
A. C. Vig

1992 ◽  
Vol 43 (5) ◽  
pp. 987 ◽  
Author(s):  
RE Holloway ◽  
AM Alston

Wheat (Triticum aestivum L. cv. Warigal) was grown in a glasshouse in deep pots (0.125 x 0.125 x 1.2 m) containing sieved solonized brown soil (calcixerollic xerochrept) comprising 0.2 m sandy loam topsoil above 0.6 m treated calcareous sandy loam subsoil and a base layer of light clay 0.26 m thick. The subsoil was treated with a mixture of salts (0, 13, 39, 75 mmolc kg-1) and with boric acid (0, 20, 38 and 73 mg B kg-1) in factorial combination. The soil was initially watered to field capacity and water use was determined by regularly weighing the pots. The soil was allowed to dry gradually during the season, but the weights of the pots were not permitted to fall below that corresponding to 17% of the available water holding capacity of the soil. Tillering, dry weight of shoots and grain, and root length density were determined. Water-use efficiency was calculated with respect to total dry weight and grain production. Salt decreased tillering, dry matter production, grain yield, root length and water-use efficiency (total dry weight): it increased sodium and decreased boron concentrations in the plants. Boron decreased dry matter production (but not tillering), grain yield, root length and water-use efficiency (total dry weight and grain yield): it increased the concentrations of boron and decreased the concentration of sodium in the plants. At the concentrations of salt and boron used (which cover the range normally encountered in subsoils in much of Upper Eyre Peninsula), boron had more deleterious effects on wheat than did salt. Yield was depressed by salt at concentrations of sodium in the tissue commonly found in field-grown plants.


Sign in / Sign up

Export Citation Format

Share Document