Response histogram shapes and tuning curves: The predicted responses of several cortical cell types to drifting gratings stimuli

1989 ◽  
Vol 60 (6) ◽  
Author(s):  
D. Malonek ◽  
Hedva Spitzer
PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0209648 ◽  
Author(s):  
Trygve E. Bakken ◽  
Rebecca D. Hodge ◽  
Jeremy A. Miller ◽  
Zizhen Yao ◽  
Thuc Nghi Nguyen ◽  
...  

2015 ◽  
Vol 114 (4) ◽  
pp. 2485-2499 ◽  
Author(s):  
Michele Fiscella ◽  
Felix Franke ◽  
Karl Farrow ◽  
Jan Müller ◽  
Botond Roska ◽  
...  

The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions.


2009 ◽  
Vol 166 (1) ◽  
pp. 46-58 ◽  
Author(s):  
Warren G. Bryson ◽  
Duane P. Harland ◽  
Jonathan P. Caldwell ◽  
James A. Vernon ◽  
Richard J. Walls ◽  
...  

Author(s):  
Casey M. Schneider-Mizell ◽  
Agnes L. Bodor ◽  
Forrest Collman ◽  
Derrick Brittain ◽  
Adam A. Bleckert ◽  
...  

AbstractThe activity and connectivity of inhibitory cells has a profound impact on the operation of neuronal networks. While the average connectivity of many inhibitory cell types has been characterized, we still lack an understanding of how individual interneurons distribute their synapses onto their targets and how heterogeneous the inhibition is onto different individual excitatory neurons. Here, we use large-scale volumetric electron microscopy (EM) and functional imaging to address this question for chandelier cells in layer 2/3 of mouse visual cortex. Using dense morphological reconstructions from EM, we mapped the complete chandelier input onto 153 pyramidal neurons. We find that the number of input synapses is highly variable across the population, but the variability is correlated with structural features of the target neuron: soma depth, soma size, and the number of perisomatic synapses received. Functionally, we found that chandelier cell activity in vivo was highly correlated and tracks pupil diameter, a proxy for arousal state. We propose that chandelier cells provide a global signal whose strength is individually adjusted for each target neuron. This approach, combining comprehensive structural analysis with functional recordings of identified cell types, will be a powerful tool to uncover the wiring rules across the diversity of cortical cell types.


Author(s):  
Chongyuan Luo ◽  
Hanqing Liu ◽  
Fangming Xie ◽  
Ethan J. Armand ◽  
Kimberly Siletti ◽  
...  

ABSTRACTSingle-cell technologies enable measure of unique cellular signatures, but are typically limited to a single modality. Computational approaches allow integration of diverse single-cell datasets, but their efficacy is difficult to validate in the absence of authentic multi-omic measurements. To comprehensively assess the molecular phenotypes of single cells in tissues, we devised single-nucleus methylCytosine, Chromatin accessibility and Transcriptome sequencing (snmC2T-seq) and applied it to post-mortem human frontal cortex tissue. We developed a computational framework to validate fine-grained cell types using multi-modal information and assessed the effectiveness of computational integration methods. Correlation analysis in individual cells revealed distinct relations between methylation and gene expression. Our integrative approach enabled joint analyses of the methylome, transcriptome, chromatin accessibility and conformation for 63 human cortical cell types. We reconstructed regulatory lineages for cortical cell populations and found specific enrichment of genetic risk for neuropsychiatric traits, enabling prediction of cell types with causal roles in disease.


Cosmetics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 24 ◽  
Author(s):  
Yusuke Ezawa ◽  
Shinobu Nagase ◽  
Akira Mamada ◽  
Shigeto Inoue ◽  
Kenzo Koike ◽  
...  

(1) Background: The objective of this work was to elucidate the hair microstructure which correlates with the stiffness of human hair fibers. (2) Methods: Bending moduli of hair fibers were evaluated for the hair samples from 156 Japanese female subjects. Hair transverse sections were dual-stained with fluorescent dyes which can stain para- and ortho-like cortical cells separately, and observed under a fluorescence light microscope. Atomic force microscopy nanoindentation measurements were performed to examine the modulus inside macrofibrils. (3) Results: The difference in bending moduli between the maximum and the minimum values was more than double. The hair of high bending modulus was rich in para-like cortical cells and the bending modulus significantly correlated with the fraction of para-like cortical cells to the whole cortex. On the other hand, the elastic moduli inside macrofibrils were almost same for the para- and ortho-like cortical cells. (4) Conclusions: Hair bending modulus depends on the fractions of the constitutional cortical cell types. The contribution of the intermacrofibrillar materials, which differed in their morphologies and amounts of para- and ortho-like cortical cells, is plausible as a cause of the difference in the modulus of the cortical cell types.


1994 ◽  
Vol 72 (6) ◽  
pp. 2966-2979 ◽  
Author(s):  
A. Kaiser ◽  
G. A. Manley

1. An experimental approach was developed that allowed recording of neurophysiological activity from single putative cochlear efferents in the auditory brain stem of anesthetized chickens with the use of glass micropipettes. The aim of this study was to study spontaneous and tone-evoked activity from single efferent neurons in the chick and to compare their properties with those of other vertebrate hair cell organs. Because the birds, like mammals, have a complex hearing organ with different hair cell types and different afferent and efferent innervation, the purpose of this study was also to determine whether different types of efferents exist. 2. In the same electrode penetrations, putative trapezoid fibers were also isolated. In addition, the penetration angle permitted recordings from units in both cochlear nuclei, nucleus magnocellularis and nucleus angularis (probably mostly cochlear afferents), in the same animal. This allowed monitoring of the auditory sensitivity of the individual animal during the experiment. With the use of physiological criteria, it was possible to distinguish between trapezoid fibers and putative cochlear efferents. Possible alternative origins of the responses described are discussed. 3. Tuning curve characteristics of putative efferents were determined. They were as sensitive as ascending auditory neurons. Q10 dB values of efferent tuning curves were < 2.5 and thus showed poorer frequency selectivity than ascending fibers; in some cases they covered the entire hearing range of the chicken. 4. Latencies to tone pips were different for ascending neurons and putative efferent units. For trapezoid fibers and neurons from the cochlear nuclei, latencies usually did not exceed 5 ms, whereas latencies of efferents were always longer. 5. Because of the interaural canal that connects both middle ear cavities in birds, the measurement of the lateralization of the efferents was difficult. In any case, the majority of putative cochlear efferents responded more sensitively to sound stimulation of the contralateral side. 6. Of the efferent units, 28% showed no spontaneous activity. The others either showed regular spontaneous activity, or their time-interval histograms showed longer modes than ascending fibers. In general, mean spontaneous activity was lower than in ascending fibers, being < 30 spikes/s. 7. In contrast to reports from mammalian studies, in which efferents only showed on peristimulus time (PST) response pattern to tonal stimuli (chopper), two different response types were found in this study: two excitation types (chopper and primary-like) and one suppression type.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 17 (1) ◽  
pp. 39-45 ◽  
Author(s):  
M. Taira ◽  
A.P. Georgopoulos

2012 ◽  
Vol 24 (8) ◽  
pp. 2078-2118 ◽  
Author(s):  
Eli Shlizerman ◽  
Philip Holmes

We study the dynamics of a quadratic integrate-and-fire model of a single-compartment neuron with a slow recovery variable, as input current and parameters describing timescales, recovery variable, and postspike reset change. Analysis of a codimension 2 bifurcation reveals that the domain of attraction of a stable hyperpolarized rest state interacts subtly with reset parameters, which reposition the system state after spiking. We obtain explicit approximations of instantaneous firing rates for fixed values of the recovery variable, and use the averaging theorem to obtain asymptotic firing rates as a function of current and reset parameters. Along with the different phase-plane geometries, these computations provide explicit tools for the interpretation of different spiking patterns and guide parameter selection in modeling different cortical cell types.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Christoffer Mattsson Langseth ◽  
Daniel Gyllborg ◽  
Jeremy A. Miller ◽  
Jennie L. Close ◽  
Brian Long ◽  
...  

AbstractThe ability to spatially resolve the cellular architecture of human cortical cell types over informative areas is essential to understanding brain function. We combined in situ sequencing gene expression data and single-nucleus RNA-sequencing cell type definitions to spatially map cells in sections of the human cortex via probabilistic cell typing. We mapped and classified a total of 59,816 cells into all 75 previously defined subtypes to create a first spatial atlas of human cortical cells in their native position, their abundances and genetic signatures. We also examined the precise within- and across-layer distributions of all the cell types and provide a resource for the cell atlas community. The abundances and locations presented here could serve as a reference for further studies, that include human brain tissues and disease applications at the cell type level.


Sign in / Sign up

Export Citation Format

Share Document