The NADPH consumption regulates the NADPH-producing pathways (pentose phosphate cycle and malic enzyme) in rat adipocytes

1987 ◽  
Vol 74 (1) ◽  
Author(s):  
Isabel Fabregat ◽  
Elisa Revilla ◽  
Alberto Machado
2007 ◽  
Vol 4 (2) ◽  
pp. 163-166
Author(s):  
Su Xiu-Rong ◽  
Lv Zhen-Ming ◽  
Li Tai-Wu ◽  
Liu Zhi-Ming ◽  
Paul K. Chien

AbstractThe isozymes of 10 enzymes connected with energy metabolism in Tegillarca granosa were analysed by vertical polyacrylamide gel electrophoresis. Esterase and α-amylase are enzymes related to energy intake, their activities were high in the digestive gland. Malate dehydrogenase, malic enzyme, isocitrate dehydrogenase, succinate dehydrogenase, alcohol dehydrogenase, lactate dehydrogenase, 6-phosphogluconate dehydrogenase (G-6-PDH) and adenosine triphosphatase (ATPase) are enzymes related to energy metabolism. The main energy supply of T. granosa comes from aerobic respiration; anaerobic metabolism and the pentose phosphate pathway take an auxiliary role in energy metabolism. The high activity of G-6-PDH in T. granosa might mean a considerable proportion of carbohydrates metabolized through this pathway. This reaction could provide abundant NADP for metabolism in T. granosa. Compared with other shellfish, T. granosa had lower activity of ATPase, which might have some relationship with the amnicolous life and low motility of this animal.


1998 ◽  
Vol 274 (3) ◽  
pp. E493-E501 ◽  
Author(s):  
F. Bradley Hillgartner ◽  
Tina Charron

Transcription of fatty acid synthase (FAS) and malic enzyme (ME) in avian liver is low during starvation or feeding a low-carbohydrate, high-fat diet and high during feeding a high-carbohydrate, low-fat diet. The role of glucose in the nutritional control of FAS and ME was investigated by determining the effects of this metabolic fuel on expression of FAS and ME in primary cultures of chick embryo hepatocytes. In the presence of triiodothyronine, glucose (25 mM) stimulated an increase in the activity and mRNA abundance of FAS and ME. These effects required the phosphorylation of glucose to glucose 6-phosphate but not further metabolism downstream of the aldolase step of the glycolytic pathway. Xylitol mimicked the effects of glucose on FAS and ME expression, suggesting that an intermediate of the pentose phosphate pathway may be involved in mediating this response. The effects of glucose on the mRNA abundance of FAS and ME were accompanied by similar changes in transcription of FAS and ME. These data support the hypothesis that glucose plays a role in mediating the effects of nutritional manipulation on transcription of FAS and ME in liver.


1975 ◽  
Vol 14 (4) ◽  
pp. 384-390 ◽  
Author(s):  
David W. McCandless ◽  
Carol E. Cassidy ◽  
Alison D. Curley

1980 ◽  
Vol 188 (3) ◽  
pp. 859-865 ◽  
Author(s):  
J P Longenecker ◽  
J F Williams

1. Investigations of the mechanism of the non-oxidative segment of the pentose phosphate cycle in isolatd hepatocytes by prediction-labelling studies following the metabolism of [2-14C]-, [5-14C]- and [4,5,6-14C]glucose are reported. The 14C distribution patterns in glucose 6-phosphate show that the reactions of the L-type pentose pathway in hepatocytes. 2. Estimates of the quantitative contribution of the L-type pentose cycle are the exclusive form of the pentose cycle to glucose metabolism have been made. The contribution of the L-type pentose cycle to the metabolism of glucose lies between 22 and 30% in isolated hepatocytes. 3. The distribution of 14C in the carbon atoms of glucose 6-phosphate following the metabolism of [4,5,6-14C]- and [2-14C]glucose indicate that gluconeogenesis from triose phosphate and non-oxidative formation of pentose 5-phosphate do not contribute significantly to randomization of 14C in isolated hepatocytes. The transaldolase exchange reaction between fructose 6-phosphate and glyceraldehyde 3-phosphate is very active in these cells.


Sign in / Sign up

Export Citation Format

Share Document