Molecular cloning and chromosomal location of genes encoding the “Early-methionine-labelled” (Em) polypeptide of Triticum aestivum L. var. Chinese Spring

1990 ◽  
Vol 80 (1) ◽  
pp. 43-48 ◽  
Author(s):  
T. S. Futers ◽  
T. J. Vaugha ◽  
P. J. Sharp ◽  
A. C. Cuming
2017 ◽  
Vol 26 (4) ◽  
pp. 467-477
Author(s):  
Tanima Dutta ◽  
Harsimran Kaur ◽  
Harpreet Singh ◽  
Sumita Kumari ◽  
Ashwani Pareek ◽  
...  

Genetics ◽  
1983 ◽  
Vol 103 (2) ◽  
pp. 313-321
Author(s):  
Paula R Neuman ◽  
J G Waines ◽  
K W Hilu ◽  
D Barnhart

ABSTRACT Two-dimensional paper chromatography was performed on methanol extracts of leaves of hexaploid bread wheat, Triticum aestivum L. em. Thell. cultivar Chinese Spring, and of the available nullisomic-tetrasomic compensating lines, the tetrasomic lines and the ditelocentric lines. The chromatograms had 27 spots identified as flavonoids and six representing phenolic acids. Some of the areas were complex and contained more than one compound. Four flavonoids were identified as under the control of gene(s) on chromosome arms 1DS, 4DL, 5AS and 6BS. A phenolic glycoside was concluded to be controlled by a gene(s) on chromosome arm 7BL. Gene(s) on chromosome arm 4DL affected the amount of compounds in two other spots, and gene(s) on chromosome arm 4BS reduced the level of all flavonoid compounds. The individual compounds in some of the complex spots may be under the control of gene(s) on homoeologous chromosomes.


1986 ◽  
Vol 48 (1) ◽  
pp. 19-20 ◽  
Author(s):  
Edward M. Golenberg

SummaryDitelocentric accessions of the Chinese Spring cultivar of Triticum aestivum were analysed electrophoretically for peptidase (PEPT) and amino peptidase (AMP = LAP) activity. Isozymic activity was missing in the accessions CSDT6AS and CSDT6BS when stained for PEPT. This was taken as evidence that the structural genes encoding these isozymes are located on the long arms of chromosomes 6A and 6B. These genes have been named Pept-A1 and Pept-B1, respectively. Isozymic activity was missing in the CSDT6BL accession when stained for AMP. This result reconfirms the previously published location of the gene Amp-B1 on the short arm of chromosome 6B and demonstrates that the two sets of loci are clearly different.


Genome ◽  
1992 ◽  
Vol 35 (3) ◽  
pp. 468-473 ◽  
Author(s):  
Ernest D. P. Whelan ◽  
G. B. Schaalje

Aneuploid seedlings of the common wheat (Triticum aestivum L.) cv. Chinese Spring (CS) that are nullisomic or telosomic for the long arm of chromosome 6D are susceptible to chilling injury under prolonged exposure to 6 °C; normal euploids or telosomics for the short arm are not. Studies of seedling grown for various durations at 20 °C prior to growth at 6 °C showed that chilling injury was a juvenile phenomenon and that the extent of injury was inversely proportional to the duration of growth at 20 °C to a maximum of about 14 days. When reciprocal crosses were made between susceptible 6D nullisomics or long-arm ditelocentrics of CS and resistant 6D nullisomics of three spring and one winter wheat cultivars, progenies from aneuploid F1 hybrids all segregated for susceptibility as a recessive trait and at a frequency approximating a dihybrid ratio; no cytoplasmic effects were detected. Aneuploids of the group 6 homoeologues of the spring wheat cvs. Cadet and Rescue were resistant, as were group 6 whole-chromosome substitutions of eight different donor wheats in the recipient parent CS and 56 other euploids tested. Genes for resistance to chilling injury appear to involve the group 6 chromosomes and the short arm of 6D in Chinese Spring. In contrast with chilling injury, all aneuploid lines with only four doses of the "corroded" loci on group 6 chromosomes exhibited chlorotic symptoms.Key words: Triticum aestivum, chilling injury.


2014 ◽  
Vol 6 (11) ◽  
pp. 3039-3048 ◽  
Author(s):  
Jian Ma ◽  
Jiri Stiller ◽  
Yuming Wei ◽  
You-Liang Zheng ◽  
Katrien M. Devos ◽  
...  

1981 ◽  
Vol 23 (2) ◽  
pp. 287-303 ◽  
Author(s):  
J. Dvořák

Triticum aestivum L. em Thell ditelosomics 7AL and 7DS and T. aestivum-Elytrigia elongata (Host) Holub (2n = 2x = 14) ditelosomic additions were crossed with "E. elongata 4x" (2n = 4x = 28), E. caespitosa (C. Koch) Nevski (2n = 4x = 28), and E. intermedia (Host) Nevski (2n = 6x = 42). The effect of each Elytrigia genotype on homoeologous (heterogenetic) chromosome pairing was assessed by comparing the pairing frequencies of T. aestivum cv. Chinese Spring telosomes 7AL and 7DS in the hybrids with the pairing frequency of telosome 7AL in haploid Chinese Spring. The genotype of "E. elongata 4x" had no effect on heterogenetic pairing in the hybrids. Although some genotypes of E. caespitosa and E. intermedia promoted heterogenetic pairing in the hybrids, others had no effect. Telosome VS of E. elongata interacted in a complementary fashion with the genotype of "E. elongata 4x," but not with the genotypes of Chinese Spring and E. caespitosa, and it promoted heterogenetic pairing. In hybrids in which the wheat diploidizing genes were active at the normal level, the E. elongata telosomes paired with chromosomes of "E. elongata 4x" in 5.8% to 24.6% of the cells, with chromosomes of E. caespitosa in 0.0% to 1.0% of the cells, and with chromosomes of E. intermedia in 0.0% to 2.8% of the cells. A model of chromosome differentiation is discussed and special attention is devoted to the origin of diploid-like pairing in polyploid species.


1977 ◽  
Vol 19 (3) ◽  
pp. 549-556 ◽  
Author(s):  
J. Dvořák

The number of chiasmata per cell at metaphase I was scored in eight haploid plants of Triticum aestivum L. emend. Thell. cv. 'Chinese Spring' and 100 hybrid plants of Chinese Spring × Secale cereale L. Mean chiasma frequency per cell ranged from 0.00 to 3.59 in the hybrids and from 0.17 to 0.35 in the haploids. Since the same wheat genotype was present in both the haploids and hybrids, it is concluded that some of the rye genotypes promoted homoeologous chromosome pairing. The absence of distinct segregation classes among the hybrids suggests that these genes constitute a polygenic system.


Sign in / Sign up

Export Citation Format

Share Document