In vitro propagation of Allium tuberosum Rottl. ex. Spreng. by shoot proliferation

1992 ◽  
Vol 11 (7) ◽  
Author(s):  
Ruchira Pandey ◽  
K.P.S. Chandel ◽  
S.Rama Rao
2017 ◽  
Vol 45 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Constantinos SALIS ◽  
Ioannis E. PAPADAKIS ◽  
Spyridon KINTZIOS ◽  
Marianna HAGIDIMITRIOU

The behavior of six citrus rootstocks, Volkameriana, Citrumelo ‘Swingle’, Citrange ‘Carrizo’, Poncirus trifoliata ‘Serra’, Poncirus trifoliata ‘Rubidoux’ and Poncirus trifoliata ‘Flying Dragon’, in in vitro propagation was studied and compared for shoot proliferation and rooting. In addition, the genetic relationships among the rootstocks studied and other Citrus species, using the Inter-Simple Sequence Repeats (ISSR) molecular markers, were investigated. Nodal explants of three months old shoots were used in Murashige and Skoog medium supplemented with N6-benzyladenine (BA) for shoot proliferation and with naphthaleneacetic acid (NAA) for rooting. The rootstock Volkameriana showed a statistically significant higher number of shoots (1.81), shoot length (15.14 mm) and number of leaves per explant (5.81), while all three Poncirus trifoliata rootstocks showed the lowest numbers. The number of roots and root length per explant were evaluated at the end of the rooting phase. The rootstock ‘Swingle’ showed a higher number of roots per explant (4.2) followed by ‘Flying Dragon’ (3.93) and ‘Carrizo’ (3.23) rootstocks. The rootstocks ‘Swingle’ (140.8 mm), Volkameriana (148 mm) and ‘Flying Dragon’ (131.12 mm) had significantly higher root length per explant compared to ‘Carrizo’ (31 mm) and ‘Rubidoux’ (34.5 mm). The ISSR molecular marker technique used in the present study grouped successfully the different species, varieties and rootstocks studied, revealing their genetic variability. The genetic variability observed among the rootstocks ranged between 0.29 (Poncirus trifoliata ‘Serra’ and Citrumelo ‘Swingle’) and 0.60 (Volkameriana and Citrumelo ‘Swingle’). The response of the rootstocks studied in in vitro propagation however is not related to their genetic affinity.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1657
Author(s):  
Nqobile P. Hlophe ◽  
Adeyemi O. Aremu ◽  
Karel Doležal ◽  
Johannes Van Staden ◽  
Jeffrey F. Finnie

In Africa and Asia, members of the genus Brachystelma are well-known for their diverse uses, especially their medicinal and nutritional values. However, the use of many Brachystelma species as a valuable resource is generally accompanied by the concern of over-exploitation attributed to their slow growth and general small size. The aim of the current study was to establish efficient micropropagation protocols for three Brachystelma species, namely Brachystelma ngomense (endangered), Brachystelma pulchellum (vulnerable) and Brachystelma pygmaeum (least concern), as a means of ensuring their conservation and survival. This was achieved using nodal segments (~10 mm in length) as the source of explants in the presence of different concentrations of three cytokinins (CK) namely N6-benzyladenine (BA), isopentenyladenine (iP) and meta-topolin riboside (mTR), over a period of 6 weeks. The highest (25 µM) concentration of cytokinin treatments typically resulted in significantly higher shoot proliferation. However, each species differed in its response to specific CK: the optimal concentrations were 25 µM mTR, 25 µM iP and 25 µM BA for Brachystelma ngomense, Brachystelma pulchellum and Brachystelma pygmaeum, respectively. During the in vitro propagation, both Brachystelma ngomense and Brachystelma pygmaeum rooted poorly while regenerated Brachystelma pulchellum generally lacked roots regardless of the CK treatments. Following pulsing (dipping) treatment of in vitro-regenerated shoots with indole-3-butyric acid (IBA), acclimatization of all three Brachystelma species remained extremely limited due to poor rooting ex vitro. To the best of our knowledge, the current protocols provide the first successful report for these Brachystelma species. However, further research remains essential to enhance the efficiency of the devised protocol.


HortScience ◽  
2017 ◽  
Vol 52 (7) ◽  
pp. 996-999 ◽  
Author(s):  
Carlos Alberto Lecona-Guzmán ◽  
Sheila Reyes-Zambrano ◽  
Felipe Alonso Barredo-Pool ◽  
Miguel Abud-Archila ◽  
Joaquín Adolfo Montes-Molina ◽  
...  

Factors such as slow growth, low rates of sexual and asexual reproduction, and viability of seeds among others limit the massive propagation of Agave americana L. by conventional methods. In this study, callus induction and shoot proliferation was determined in A. americana using Murashige and Skoog (MS) medium supplemented with dicholorophenoxyacetic acid (2,4-D) and 6-benzyl adenine (BA). Meristematic tissue was used as the explants, and were placed on MS medium supplemented with 30.0 g·L−1 sucrose with 0.11, 0.18, or 0.45 μm 2,4-D and 11.0, 22.0, 38.2, 44.0, 58.7, or 73.3 μm BA. Treatments were implemented according to factorial experimental design 3 × 6. After 1 month, the number of explants with callus was determined, whereas the numbers of shoots per explant were monitored after 4, 16, 20, and 36 weeks. The maximum percent of explants with callus was obtained with 0.11 μm 2,4-D and 58.7 and 73.3 μm BA, whereas the maximum numbers of shoots per explant (71) were obtained with 0.11 μm 2,4-D and 73.3 μm BA. The effect of different concentrations of indolebutyric acid (IBA) in the rooting of shoots was evaluated. There were no significant effects of IBA on the number of roots, root length, and axillary roots. Plantlets were acclimatized in the glasshouse and they did not show any phenotypic alteration. This is a highly efficient protocol for the in vitro propagation of A. americana via indirect organogenesis.


1985 ◽  
Vol 65 (4) ◽  
pp. 1025-1032 ◽  
Author(s):  
BRIAN W. DYKEMAN ◽  
BRUCE G. CUMMING

Methods were developed for the successful in vitro propagation of ostrich fern (Matteuccia struthiopteris (L.) Todaro) clones utilizing shoot tips derived by forcing lateral buds on the rhizome. Maximum shoot proliferation was attained with 6-furfurylaminopurine (kinetin) at 1.0 mg/L with half-strength Murashige and Skoog (MS) inorganic salts and sucrose, agar, NaH2PO4, adenine sulphate, i-inositol and thiamine∙HCl at 30 000, 4000, 85, 40, 100, 0.4 mg/L, respectively. Excellent frond and root development was achieved with half-strength MS salts and sucrose, agar, i-inositol and thiamine∙HCl at 7500, 4000, 100 and 0.4 mg/L, respectively. The methods developed were satisfactory for a cross section of clones. Morphogenesis in vitro was dependent on medium osmotic potential.Key words: Matteuccia struthiopteris, in vitro propagation, tissue culture, morphogenesis, fern (ostrich)


Revista CERES ◽  
2013 ◽  
Vol 60 (2) ◽  
pp. 152-160 ◽  
Author(s):  
Leticia Mascarenhas Pereira Barbosa ◽  
Vespasiano Borges de Paiva Neto ◽  
Leonardo Lucas Carnevalli Dias ◽  
Reginaldo Alves Festucci-Buselli ◽  
Rodrigo Sobreira Alexandre ◽  
...  

In vitro propagation has become an effective practice for large-scale production of strawberry plants. The objective of this study was to evaluate the hyperhydricity and the multiplication capacity of two strawberry varieties (Fragaria x ananassa Duch. 'Dover' and 'Burkley') propagated in vitro. Plants maintained in MS medium supplemented with 1.0 mg L-1 BA were individualized and transferred to the same medium solidified with Agar (6.5 g L-1) or Phytagel® (2.5 g L-1) and BA at different concentrations (0; 0.5; 1.0; 2.0 and 3.0 mg L-1). Biochemical and anatomical analyses were carried out, as well as the analysis of the morphological hyperhydricity characteristics. The analysis of data showed: a) the increase in cytokinin concentration increased hyperhydricity frequency in both varieties; b) at concentrations up to 2.0 mg L-1 BA, the replacement of Agar by Phytagel® induced a higher formation of hyperhydric shoots; and c) the addition of BA induced oxidative stress, which is characterized by increased antioxidant activity and lipid peroxidation, as well as alterations at the cellular level, such as malformation of stomata and epidermal cells. In conclusion, the culture medium containing 0.5 mg L-1 BA solidified with Agar provided lower hyperhydricity percentages in association with higher rates of shoot proliferation in strawberry.


2007 ◽  
Vol 44 (07) ◽  
pp. 514-519 ◽  
Author(s):  
Ved Prakash Pandey ◽  
Jose Kudakasseril ◽  
Elizabeth Cherian ◽  
George Patani ◽  

Two different methods of in vitro multiplication of Rauwolfia serpentina from nodal explants were compared viz. multiplication via callus morphogenesis and that via shoot proliferation from axillary buds. The second method was found to be far better. The optimum shoot proliferation occurred on Murashige and Skoog (MS) medium supplemented with 1 mg/L naphthalene acetic acid (NAA) and 2 mg/L of benzyl aminopurine (BAP). The best rooting of shoots occurred on MS medium containing 4% sucrose and 1 mg/L of NAA. Solid and liquid MS media were found to be similar in supporting shoot proliferation. The plants produced were successfully hardened and established in soil. An easy, reliable and reproducible protocol was developed for in vitro micropropagation of Rauwolfia serpentina from nodal explants.


Sign in / Sign up

Export Citation Format

Share Document