Mitochondrial genome transmission in Chlamydomonas diploids obtained by sexual crosses and artificial fusions: Role of the mating type and of a 1 kb intron

1990 ◽  
Vol 223 (2) ◽  
pp. 180-184 ◽  
Author(s):  
Claire Remacle ◽  
Catherine Bovie ◽  
Marie-Rose Michel-Wolwertz ◽  
Roland Loppes ◽  
René F. Matagne
Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1437-1444
Author(s):  
C Ian Robertson ◽  
Kirk A Bartholomew ◽  
Charles P Novotny ◽  
Robert C Ullrich

The Aα locus is one of four master regulatory loci that determine mating type and regulate sexual development in Schizophyllum commune. We have made a plasmid containing a URA1 gene disruption of the Aα Y1 gene. Y1 is the sole Aα gene in Aα1 strains. We used the plasmid construction to produce an Aα null (i.e., AαΔ) strain by replacing the genomic Y1 gene with URA1 in an Aα1 strain. To characterize the role of the Aα genes in the regulation of sexual development, we transformed various Aα Y and Z alleles into AαΔ strains and examined the acquired mating types and mating abilities of the transformants. These experiments demonstrate that the Aα Y gene is not essential for fungal viability and growth, that a solitary Z Aα mating-type gene does not itself activate development, that Aβ proteins are sufficient to activate the A developmental pathway in the absence of Aα proteins and confirm that Y and Z genes are the sole determinants of Aα mating type. The data from these experiments support and refine our model of the regulation of A-pathway events by Y and Z proteins.


1990 ◽  
Vol 10 (2) ◽  
pp. 549-560 ◽  
Author(s):  
S A Nadin-Davis ◽  
A Nasim

We have further investigated the function of the ras1 and byr1 genes, which were previously shown to be critical for sexual differentiation in fission yeast cells. Several physiological similarities between strains containing null alleles of these genes supports the idea that ras1 and byr1 are functionally closely related. Furthermore, we have found that byr1 is allelic to ste1, one of at least 10 genes which when mutated can cause sterility. Since ras1 had previously been found to be allelic to ste5, both ras and byr genes are now clearly shown to be a part of the ste gene family, thus confirming their close functional relationship. The observation that the mating-type loci could overcome the sporulation block of ras1 and byr1 mutant strains prompted investigation of the role of the ras-byr pathway in the induction of the mating-type gene transcripts upon nitrogen starvation. By Northern analysis of RNA preparations from strains carrying wild-type or mutant ras1 alleles and grown to different stages of the growth cycle, we have shown that ras1 plays an important role in inducing the Pi transcript of the mating-type loci and the mei3 gene transcript. These observations provide a molecular basis for the role of the ste gene family, including ras1 and byr1, in meiosis and indicate that further characterization of other ste genes would be very useful for elucidating the mechanism of ras1 function in fission yeast cells.


Genetics ◽  
1975 ◽  
Vol 80 (3) ◽  
pp. 445-462
Author(s):  
A P Eslava ◽  
M I Alvarez ◽  
Patricia V Burke ◽  
M Delbrück

ABSTRACT Sexual crosses between strains of Phycomyces blakesleeanus, involving three auxotrophic and one color marker and yielding a high proportion of zygospore germination, are described. Samples of 20-40 germ spores from 311 individual fertile germ sporangia originating from five two-factor and three three-factor crosses were characterized. The results show: (1) absence of any contribution of apogamic nuclei to the progeny, (2) confirmation of Burgeff's conjecture that the germ spores of any germ sporangium in most cases derive from one meiosis. In a cross involving two allelic markers the analysis of 175 pooled germ sporangia suggests an intragenic recombination frequency of 0.6%. All other factor combinations tested are unlinked. The bulk of the germ spores are homokaryotic. However, a small portion (4%) are heterokaryotic with respect to mating type.


2021 ◽  
Vol 46 (3) ◽  
Author(s):  
Ashok Kumar ◽  
Jagpreet Singh Nanda ◽  
Sharanjot Saini ◽  
Jagmohan Singh

1990 ◽  
Vol 10 (2) ◽  
pp. 549-560
Author(s):  
S A Nadin-Davis ◽  
A Nasim

We have further investigated the function of the ras1 and byr1 genes, which were previously shown to be critical for sexual differentiation in fission yeast cells. Several physiological similarities between strains containing null alleles of these genes supports the idea that ras1 and byr1 are functionally closely related. Furthermore, we have found that byr1 is allelic to ste1, one of at least 10 genes which when mutated can cause sterility. Since ras1 had previously been found to be allelic to ste5, both ras and byr genes are now clearly shown to be a part of the ste gene family, thus confirming their close functional relationship. The observation that the mating-type loci could overcome the sporulation block of ras1 and byr1 mutant strains prompted investigation of the role of the ras-byr pathway in the induction of the mating-type gene transcripts upon nitrogen starvation. By Northern analysis of RNA preparations from strains carrying wild-type or mutant ras1 alleles and grown to different stages of the growth cycle, we have shown that ras1 plays an important role in inducing the Pi transcript of the mating-type loci and the mei3 gene transcript. These observations provide a molecular basis for the role of the ste gene family, including ras1 and byr1, in meiosis and indicate that further characterization of other ste genes would be very useful for elucidating the mechanism of ras1 function in fission yeast cells.


1999 ◽  
Vol 9 (14) ◽  
pp. 767-770 ◽  
Author(s):  
Sang Eun Lee ◽  
Frédéric Pâques ◽  
Jason Sylvan ◽  
James E. Haber

2007 ◽  
Vol 6 (7) ◽  
pp. 1189-1199 ◽  
Author(s):  
M. Alejandra Mandel ◽  
Bridget M. Barker ◽  
Scott Kroken ◽  
Steven D. Rounsley ◽  
Marc J. Orbach

ABSTRACT Coccidioides species, the fungi responsible for the valley fever disease, are known to reproduce asexually through the production of arthroconidia that are the infectious propagules. The possible role of sexual reproduction in the survival and dispersal of these pathogens is unexplored. To determine the potential for mating of Coccidioides, we analyzed genome sequences and identified mating type loci characteristic of heterothallic ascomycetes. Coccidioides strains contain either a MAT1-1 or a MAT1-2 idiomorph, which is 8.1 or 9 kb in length, respectively, the longest reported for any ascomycete species. These idiomorphs contain four or five genes, respectively, more than are present in the MAT loci of most ascomycetes. Along with their cDNA structures, we determined that all genes in the MAT loci are transcribed. Two genes frequently found in common sequences flanking MAT idiomorphs, APN2 and COX13, are within the MAT loci in Coccidioides, but the MAT1-1 and MAT1-2 copies have diverged dramatically from each other. Data indicate that the acquisition of these genes in the MAT loci occurred prior to the separation of Coccidioides from Uncinocarpus reesii. An analysis of 436 Coccidioides isolates from patients and the environment indicates that in both Coccidioides immitis and C. posadasii, there is a 1:1 distribution of MAT loci, as would be expected for sexually reproducing species. In addition, an analysis of isolates obtained from 11 soil samples demonstrated that at three sampling sites, strains of both mating types were present, indicating that compatible strains were in close proximity in the environment.


2013 ◽  
Vol 61 ◽  
pp. 218-228 ◽  
Author(s):  
Jose J.G. Marin ◽  
Alicia Hernandez ◽  
Isabel E. Revuelta ◽  
Ester Gonzalez-Sanchez ◽  
Jose M. Gonzalez-Buitrago ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Margarita A. Sazonova ◽  
Vasily V. Sinyov ◽  
Anastasia I. Ryzhkova ◽  
Elena V. Galitsyna ◽  
Zukhra B. Khasanova ◽  
...  

Mutations of mtDNA, due to their higher frequency of occurrence compared to nuclear DNA mutations, are the most promising biomarkers for assessing predisposition of the occurrence and development of atherogenesis. The aim of the present article was an analysis of correlation of several mitochondrial genome mutations with carotid atherosclerosis. Leukocytes from blood of study participants from Moscow polyclinics were used as research material. The sample size was 700 people. The sample members were diagnosed with “atherosclerosis” on the basis of ultrasonographic examination and biochemical and molecular cell tests. DNA was isolated from blood leukocyte samples of the study participants. PCR fragments of DNA, containing the region of 11 investigated mutations, were pyrosequenced. The heteroplasmy level of these mutations was detected. Statistical analysis of the obtained results was performed using the software package SPSS 22.0. According to the obtained results, an association of mutations m.652delG, m.3336C>T, m.12315G>A, m.14459G>A m.15059G>A with carotid atherosclerosis was found. These mutations can be biomarkers for assessing predisposition to this disease. Additionally, two single nucleotide substitutions (m.13513G>A and m.14846G>A), negatively correlating with atherosclerotic lesions, were detected. These mutations may be potential candidates for gene therapy of atherosclerosis and its risk factors.


Sign in / Sign up

Export Citation Format

Share Document