Protease production by Bacillus subtilis in oxygen-controlled, glucose fed-batch fermentations

1988 ◽  
Vol 28 (4-5) ◽  
pp. 404-408 ◽  
Author(s):  
Manoj M. Kole ◽  
Indira Draper ◽  
Donald F. Gerson
Author(s):  
Cheong, J.Y. ◽  
Mustafa, M. ◽  
Abd. Aziz, N.A. ◽  
Go, R. ◽  
Ahmad Adli, A.

2021 ◽  
Vol 16 (7) ◽  
pp. 84-91
Author(s):  
Maslinda Alias ◽  
Hakim Che Harun Mohammad ◽  
Ashraf Razali Nurul ◽  
Jasnizat Saidin ◽  
Nazaitulshila Rasit ◽  
...  

This research aims to produce thermostable alkaline protease from Bacillus subtilis isolated from La Hot Spring, Terengganu, Malaysia. The study was also conducted to determine the optimum conditions for protease production and stability by considering several parameters including pH, temperature and salt concentration. All seven bacteria were screened on skim milk agar overnight at 37 °C. Three strains with the highest proteolytic activity were identified in protease specific medium. The thermostable alkaline protease had an optimum temperature of 60 °C which achieved 85.73, 82.90 and 83.05 U/mL of protease activity for the three strains respectively. Furthermore, the strains exhibited significant activity of more than 90% from their original activity. Meanwhile, the optimum pH for protease production was pH 9 with the protease activity of 76.76, 79.71 and 88.39 U/mL for TB4, TB6 and TB9 strains, respectively. Proteases were found stable at pH 9 where the loss did not exceed 30% of its original activity. Collectively, all of the data emphasised that proteases from B. subtilis were alkaline thermostable proteases in accordance with a recent report. The finding highlights the viability of the proteases for biotechnological and industrial applications.


2011 ◽  
Vol 17 (2) ◽  
pp. 215-222 ◽  
Author(s):  
P. Rathakrishnan ◽  
P. Nagarajan ◽  
Rajesh Kannan

Optimization of the growth condition for maximum growth rate and protease production was carried out using Bacillus subtilis. The optimization of protease production using agro industrial waste product such as cassava waste as substrate was performed with statistical methodology based on experimental designs. The screening of twelve nutrients for their influence on protease production was achieved using a Plackett-Burman design. MgSO4.7H2O, casein and glucose were selected based on their positive influence on protease production. The selected components were optimized using Response Surface Methodology (RSM). The optimum conditions are (% w/w): MgsO4.7H2O- 0.14, casein- 1.4 and glucose- 2.64. These conditions were validated experimentally which revealed an enhanced protease yield of 202.048 U/gds.


2017 ◽  
Vol 147 (5) ◽  
pp. 1204-1213 ◽  
Author(s):  
Fouzia Hussain ◽  
Shagufta Kamal ◽  
Saima Rehman ◽  
Muhammad Azeem ◽  
Ismat Bibi ◽  
...  

2014 ◽  
Vol 70 (2) ◽  
pp. 234-240 ◽  
Author(s):  
G. A. Amin

Surfactin produced by Bacillus subtilis BDCC-TUSA-3 from Maldex-15 was used as a growth-associated product in a conventional batch process. Maldex-15 is a cheap industrial by-product recovered during manufacturing of high fructose syrup from corn starch. Surfactin production was greatly improved in exponential fed-batch fermentation. Maldex-15 and other nutrients were exponentially fed into the culture based on the specific growth rate of the bacterium. In order to maximize surfactin yield and productivity, conversion of different quantities of Maldex-15 into surfactin was investigated in five different fermentation runs. In all runs, most of the Maldex-15 was consumed and converted into surfactin and cell biomass with appreciable efficiencies. The best results were obtained with the fermentation run supplied with 204 g Maldex-15. Up to 36.1 g l−1 of surfactin and cell biomass of 31.8 g l−1 were achieved in 12 h. Also, a marked substrate yield of 0.272 g g−1 and volumetric reactor productivity of 2.58 g 1−1 h−1 were obtained, confirming the establishment of a cost-effective commercial surfactin production.


2006 ◽  
Vol 72 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Kazuhiko Kurosawa ◽  
Takeshi Hosaka ◽  
Norimasa Tamehiro ◽  
Takashi Inaoka ◽  
Kozo Ochi

ABSTRACT The capacity of ribosomal modification to improve antibiotic production by Streptomyces spp. has already been demonstrated. Here we show that introduction of mutations that produce streptomycin resistance (str) also enhances α-amylase (and protease) production by a strain of Bacillus subtilis as estimated by measuring the enzyme activity. The str mutations are point mutations within rpsL, the gene encoding the ribosomal protein S12. In vivo as well as in vitro poly(U)-directed cell-free translation systems showed that among the various rpsL mutations K56R (which corresponds to position 42 in E. coli) was particularly effective at enhancing α-amylase production. Cells harboring the K56R mutant ribosome exhibited enhanced translational activity during the stationary phase of cell growth. In addition, the K56R mutant ribosome exhibited increased 70S complex stability in the presence of low Mg2+ concentrations. We therefore conclude that the observed increase in protein synthesis activity by the K56R mutant ribosome reflects increased stability of the 70S complex and is responsible for the increase in α-amylase production seen in the affected strain.


Sign in / Sign up

Export Citation Format

Share Document