Morphological characteristics of senile plaques in familial Alzheimer's disease

1990 ◽  
Vol 80 (3) ◽  
pp. 227-232 ◽  
Author(s):  
E. Iseki ◽  
M. Matsushita ◽  
K. Kosaka ◽  
K. Suzuki ◽  
N. Amano ◽  
...  
2020 ◽  
Vol 21 (12) ◽  
pp. 4443
Author(s):  
Hiroyuki Shimada ◽  
Shinobu Minatani ◽  
Jun Takeuchi ◽  
Akitoshi Takeda ◽  
Joji Kawabe ◽  
...  

We previously identified a novel mutation in amyloid precursor protein from a Japanese pedigree of familial Alzheimer’s disease, FAD (Osaka). Our previous positron emission tomography (PET) study revealed that amyloid β (Aβ) accumulation was negligible in two sister cases of this pedigree, indicating a possibility that this mutation induces dementia without forming senile plaques. To further explore the relationship between Aβ, tau and neurodegeneration, we performed tau and Aβ PET imaging in the proband of FAD (Osaka) and in patients with sporadic Alzheimer’s disease (SAD) and healthy controls (HCs). The FAD (Osaka) patient showed higher uptake of tau PET tracer in the frontal, lateral temporal, and parietal cortices, posterior cingulate gyrus and precuneus than the HCs (>2.5 SD) and in the lateral temporal and parietal cortices than the SAD patients (>2 SD). Most noticeably, heavy tau tracer accumulation in the cerebellum was found only in the FAD (Osaka) patient. Scatter plot analysis of the two tracers revealed that FAD (Osaka) exhibits a distinguishing pattern with a heavy tau burden and subtle Aβ accumulation in the cerebral cortex and cerebellum. These observations support our hypothesis that Aβ can induce tau accumulation and neuronal degeneration without forming senile plaques.


2021 ◽  
pp. 1-12
Author(s):  
Matthew John Mold ◽  
Adam O’Farrell ◽  
Benjamin Morris ◽  
Christopher Exley

Background: Familial Alzheimer’s disease (fAD) is driven by genetic predispositions affecting the expression and metabolism of the amyloid-β protein precursor. Aluminum is a non-essential yet biologically-reactive metal implicated in the etiology of AD. Recent research has identified aluminum intricately and unequivocally associated with amyloid-β in senile plaques and, more tentatively, co-deposited with neuropil-like threads in the brains of a Colombian cohort of donors with fAD. Objective: Herein, we have assessed the co-localization of aluminum to immunolabelled phosphorylated tau to probe the potential preferential binding of aluminum to senile plaques or neurofibrillary tangles in the same Colombian kindred. Methods: Herein, we have performed phosphorylated tau-specific immunolabelling followed by aluminum-specific fluorescence microscopy of the identical brain tissue sections via a sequential labelling method. Results: Aluminum was co-localized with immunoreactive phosphorylated tau in the brains of donors with fAD. While aluminum was predominantly co-located to neurofibrillary tangles in the temporal cortex, aluminum was more frequently co-deposited with cortical senile plaques. Conclusion: These data suggest that the co-deposition of aluminum with amyloid-β precedes that with neurofibrillary tangles. Extracellularly deposited amyloid-β may also be more immediately available to bind aluminum versus intracellular aggregates of tau. Therapeutic approaches to reduce tau have demonstrated the amelioration of its synergistic interactions with amyloid-β, ultimately reducing tau pathology and reducing neuronal loss. These data support the intricate associations of aluminum in the neuropathology of fAD, of which its subsequent reduction may further therapeutic benefits observed in ongoing clinical trials in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nobuto Kakuda ◽  
Mako Takami ◽  
Masayasu Okochi ◽  
Kensaku Kasuga ◽  
Yasuo Ihara ◽  
...  

AbstractPresenilin (PS) with a genetic mutation generates abundant β-amyloid protein (Aβ) 43. Senile plaques are formed by Aβ43 in the cerebral parenchyma together with Aβ42 at middle ages. These brains cause the early onset of Alzheimer’s disease (AD), which is known as familial Alzheimer’s disease (FAD). Based on the stepwise processing model of Aβ generation by γ-secretase, we reassessed the levels of Aβs in the cerebrospinal fluid (CSF) of FAD participants. While low levels of Aβ38, Aβ40, and Aβ42 were generated in the CSF of FAD participants, the levels of Aβ43 were unchanged in some of them compared with other participants. We sought to investigate why the level of Aβ43 was unchanged in FAD participants. These characteristics of Aβ generation were observed in the γ-secretase assay in vitro using cells, which express FAD mutations in PS1. Aβ38 and Aβ40 generation from their precursors, Aβ42 and Aβ43, was decreased in PS1 mutants compared with wild-type (WT) PS1, as observed in the CSF. Both the ratios of Aβ38/Aβ42 and Aβ40/Aβ43 in PS1 mutants were lower than those in the WT. However, the ratio of Aβ43/amyloid precursor protein intracellular domain (AICD) increased in the PS1 mutants in an onset age dependency, while other Aβ/AICD ratios were decreased or unchanged. Importantly, liquid chromatography–mass spectrometry found that the generation of Aβ43 was stimulated from Aβ48 in PS1 mutants. This result indicates that PS1 mutants switched the Aβ43 generating line, which reflects the level of Aβ43 in the CSF and forming senile plaques.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Dong ◽  
Morgan Newman ◽  
Stephen M. Pederson ◽  
Karissa Barthelson ◽  
Nhi Hin ◽  
...  

Abstract Background Early-onset familial Alzheimer’s disease (EOfAD) is promoted by dominant mutations, enabling the study of Alzheimer’s disease (AD) pathogenic mechanisms through generation of EOfAD-like mutations in animal models. In a previous study, we generated an EOfAD-like mutation, psen1Q96_K97del, in zebrafish and performed transcriptome analysis comparing entire brains from 6-month-old wild type and heterozygous mutant fish. We identified predicted effects on mitochondrial function and endolysosomal acidification. Here we aimed to determine whether similar effects occur in 7 day post fertilization (dpf) zebrafish larvae that might be exploited in screening of chemical libraries to find ameliorative drugs. Results We generated clutches of wild type and heterozygous psen1Q96_K97del 7 dpf larvae using a paired-mating strategy to reduce extraneous genetic variation before performing a comparative transcriptome analysis. We identified 228 differentially expressed genes and performed various bioinformatics analyses to predict cellular functions. Conclusions Our analyses predicted a significant effect on oxidative phosphorylation, consistent with our earlier observations of predicted effects on ATP synthesis in adult heterozygous psen1Q96_K97del brains. The dysregulation of minichromosome maintenance protein complex (MCM) genes strongly contributed to predicted effects on DNA replication and the cell cycle and may explain earlier observations of genome instability due to PSEN1 mutation. The upregulation of crystallin gene expression may be a response to defective activity of mutant Psen1 protein in endolysosomal acidification. Genes related to extracellular matrix (ECM) were downregulated, consistent with previous studies of EOfAD mutant iPSC neurons and postmortem late onset AD brains. Also, changes in expression of genes controlling iron ion transport were observed without identifiable changes in the prevalence of transcripts containing iron responsive elements (IREs) in their 3′ untranslated regions (UTRs). These changes may, therefore, predispose to the apparent iron dyshomeostasis previously observed in 6-month-old heterozygous psen1Q96_K97del EOfAD-like mutant brains.


Sign in / Sign up

Export Citation Format

Share Document