The optic lobe projection pattern of polarization-sensitive photoreceptor cells in Drosophila melanogaster

1991 ◽  
Vol 265 (1) ◽  
pp. 185-191 ◽  
Author(s):  
Mark E. Fortini ◽  
Gerald M. Rubin
1988 ◽  
Vol 8 (2) ◽  
pp. 778-785 ◽  
Author(s):  
S C Wadsworth ◽  
L S Rosenthal ◽  
K L Kammermeyer ◽  
M B Potter ◽  
D J Nelson

We isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobase poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.


PLoS ONE ◽  
2010 ◽  
Vol 5 (2) ◽  
pp. e9217 ◽  
Author(s):  
Martin Barth ◽  
Michael Schultze ◽  
Christoph M. Schuster ◽  
Roland Strauss

2019 ◽  
Vol 2 (1) ◽  
pp. e201800149 ◽  
Author(s):  
Carina M Weigelt ◽  
Oliver Hahn ◽  
Katharina Arlt ◽  
Matthias Gruhn ◽  
Annika J Jahn ◽  
...  

miRNAs are small, non-coding RNAs that regulate gene expression post-transcriptionally. We used small RNA sequencing to identify tissue-specific miRNAs in the adult brain, thorax, gut, and fat body of Drosophila melanogaster. One of the most brain-specific miRNAs that we identified was miR-210, an evolutionarily highly conserved miRNA implicated in the regulation of hypoxia in mammals. In Drosophila, we show that miR-210 is specifically expressed in sensory organs, including photoreceptors. miR-210 knockout mutants are not sensitive toward hypoxia but show progressive degradation of photoreceptor cells, accompanied by decreased photoreceptor potential, demonstrating an important function of miR-210 in photoreceptor maintenance and survival.


2019 ◽  
Author(s):  
Maureen M Sampson ◽  
Katherine M Myers Gschweng ◽  
Ben J Hardcastle ◽  
Shivan L Bonanno ◽  
Tyler R Sizemore ◽  
...  

AbstractSensory systems rely on neuromodulators, such as serotonin, to provide flexibility for information processing in the face of a highly variable stimulus space. Serotonergic neurons broadly innervate the optic ganglia of Drosophila melanogaster, a widely used model for studying vision. The role for serotonergic signaling in the Drosophila optic lobe and the mechanisms by which serotonin regulates visual neurons remain unclear. Here we map the expression patterns of serotonin receptors in the visual system, focusing on a subset of cells with processes in the first optic ganglion, the lamina, and show that serotonin can modulate visual responses. Serotonin receptors are expressed in several types of columnar cells in the lamina including 5-HT2B in lamina monopolar cell L2, required for the initial steps of visual processing, and both 5-HT1A and 5-HT1B in T1 cells, whose function is unknown. Subcellular mapping with GFP-tagged 5-HT2B and 5-HT1A constructs indicates that these receptors localize to layer M2 of the medulla, proximal to serotonergic boutons, suggesting that the medulla is the primary site of serotonergic regulation for these neurons. Serotonin increases intracellular calcium in L2 terminals in layer M2 and alters the kinetics of visually induced calcium transients in L2 neurons following dark flashes. These effects were not observed in flies without a functional 5-HT2B, which displayed severe differences in the amplitude and kinetics of their calcium response to both dark and light flashes. While we did not detect serotonin receptor expression in L1 neurons, they also undergo serotonin-induced calcium changes, presumably via cell non-autonomous signaling pathways. We provide the first functional data showing a role for serotonergic neuromodulation of neurons required for initiating visual processing in Drosophila and establish a new platform for investigating the serotonergic neuromodulation of sensory networks.Author SummarySerotonergic neurons innervate the Drosophila melanogaster eye, but the function of serotonergic signaling is not known. We found that serotonin receptors are expressed in all neuropils of the optic lobe and identify specific neurons involved in visual information processing that express serotonin receptors. We then demonstrate that activation of these receptors can alter how visual information is processed. These are the first data suggesting a functional role for serotonergic signaling in Drosophila vision. This study contributes to the understanding of serotonin biology and modulation of sensory circuits.


2019 ◽  
Author(s):  
Ana Patricia Ramos ◽  
Ola Gustafsson ◽  
Nicolas Labert ◽  
Iris Salecker ◽  
Dan-Eric Nilsson ◽  
...  

AbstractBackgroundArthropod eyes have diversified during evolution to serve multiple needs, such as finding mates, hunting prey, and navigating in complex surroundings under varying light conditions. This diversity is reflected in the optical apparatus, photoreceptors and neural circuits that underpin vision. While this diversity has been extensively documented, our ability to genetically manipulate the visual system to investigate its function is largely limited to a single species, the fruitfly Drosophila melanogaster. Here, we describe the visual system of Parhyale hawaiensis, an amphipod crustacean for which we have established tailored genetic tools.ResultsAdult Parhyale have apposition-type compound eyes made up of ∼50 ommatidia. Each ommatidium contains four photoreceptor cells with large rhabdomeres (R1-4), expected to be sensitive to the polarisation of light, and one photoreceptor cell with a smaller rhabdomere (R5). The two types of photoreceptors express different opsins, belonging to families with distinct wavelength sensitivities. Using the cis.-regulatory regions of opsin genes, we established transgenic reporters expressed in each photoreceptor cell type. Based on these reporters, we show that R1-4 and R5 photoreceptors extend axons to the first optic lobe neuropil, revealing striking differences compared with the photoreceptor projections found in related crustaceans and insects. Investigating visual function, we show that Parhyale has a positive phototactic response and is capable of adapting its eyes to different levels of light intensity.ConclusionsWe propose that the visual system of Parhyale serves low-resolution visual tasks, such as orientation and navigation, based on broad gradients of light intensity and polarisation. Optic lobe structure and photoreceptor projections point to significant divergence from the conserved visual circuits found in other malacostracan crustaceans and insects, which could be associated with a shift to low-resolution vision. Our study provides the foundation for research in the visual system of this genetically tractable species.


Sign in / Sign up

Export Citation Format

Share Document