Secretory granule formation and membrane recycling by the trans-Golgi network in adipokinetic cells of Locusta migratoria in relation to flight and rest

1995 ◽  
Vol 279 (3) ◽  
pp. 585-590 ◽  
Author(s):  
J. H. B. Diederen ◽  
H. G. B. Vullings
Physiology ◽  
2006 ◽  
Vol 21 (2) ◽  
pp. 124-133 ◽  
Author(s):  
Taeyoon Kim ◽  
Marjorie C. Gondré-Lewis ◽  
Irina Arnaoutova ◽  
Y. Peng Loh

The dense-core secretory granule is a key organelle for secretion of hormones and neuropeptides in endocrine cells and neurons, in response to stimulation. Cholesterol and granins are critical for the assembly of these organelles at the trans-Golgi network, and their biogenesis is regulated quantitatively by posttranscriptional and posttranslational mechanisms.


2004 ◽  
Vol 279 (19) ◽  
pp. 20242-20249 ◽  
Author(s):  
Nicole Beuret ◽  
Hansruedi Stettler ◽  
Anja Renold ◽  
Jonas Rutishauser ◽  
Martin Spiess

The formation of secretory granules and regulated secretion are generally assumed to occur only in specialized endocrine, neuronal, or exocrine cells. We discovered that regulated secretory proteins such as the hormone precursors pro-vasopressin, pro-oxytocin, and pro-opiomelanocortin, as well as the granins secretogranin II and chromogranin B but not the constitutive secretory protein α1-protease inhibitor, accumulate in granular structures at the Golgi and in the cell periphery in transfected COS-1 fibroblast cells. The accumulations were observed in 30–70% of the transfected cells expressing the pro-hormones and for virtually all of the cells expressing the granins. Similar structures were also generated in other cell lines believed to be lacking a regulated secretory pathway. The accumulations resembled secretory granules morphologically in immunofluorescence and electron microscopy. They were devoid of markers of the endoplasmic reticulum, endosomes, and lysosomes but in part stained positive for the trans-Golgi network marker TGN46, consistent with their formation at the trans-Golgi network. When different regulated proteins were coexpressed, they were frequently found in the same granules, whereas α1-protease inhibitor could not be detected in accumulations formed by secretogranin II, demonstrating segregation of regulated from constitutive secretory proteins. In pulse-chase experiments, significant intracellular storage of secretogranin II and chromogranin B was observed and secretion of retained secretogranin II was stimulated with the calcium ionophore A23187. The results suggest that expression of regulated cargo proteins is sufficient to generate structures that resemble secretory granules in the background of constitutively secreting cells, supporting earlier proposals on the mechanism of granule formation.


2021 ◽  
Author(s):  
Jennifer Reck ◽  
Nicole Beuret ◽  
Erhan Demirci ◽  
Cristina Prescianotto-Baschong ◽  
Martin Spiess

ABSTRACTUnlike constitutively secreted proteins, peptide hormones are stored in densely packed secretory granules, before regulated release upon stimulation. Secretory granules are formed at the trans-Golgi network (TGN) by self-aggregation of prohormones as functional amyloids. The nonapeptide hormone vasopressin, which forms a small disulfide loop, was shown to be responsible for granule formation of its precursor in the TGN as well as for toxic fibrillar aggregation of unfolded mutants in the endoplasmic reticulum (ER). Several other hormone precursors also contain similar small disulfide loops suggesting their function as a general device to mediate aggregation for granule biogenesis. To test this hypothesis, we studied the capacity of small disulfide loops of different hormone precursors to mediate aggregation in the ER and the TGN. They indeed induced ER aggregation although to different extents in Neuro-2a and COS-1 cells. Fused to a constitutively secreted reporter protein, they also promoted sorting into secretory granules, enhanced stimulated secretion, and increased Lubrol insolubility in AtT20 cells. These results support the hypothesis that small disulfide loops act as novel signals for secretory granule biogenesis and sorting by self-aggregation.


1991 ◽  
Vol 115 (6) ◽  
pp. 1505-1519 ◽  
Author(s):  
E Chanat ◽  
W B Huttner

Regulated secretory proteins are thought to be sorted in the trans-Golgi network (TGN) via selective aggregation. The factors responsible for this aggregation are unknown. We show here that two widespread regulated secretory proteins, chromogranin B and secretogranin II (granins), remain in an aggregated state when TGN vesicles from neuroendocrine cells (PC12) are permeabilized at pH 6.4 in 1-10 mM calcium, conditions believed to exist in this compartment. Permeabilization of immature secretory granules under these conditions allowed the recovery of electron dense cores. The granin aggregates in the TGN largely excluded glycosaminoglycan chains which served as constitutively secreted bulk flow markers. The low pH, high calcium milieu was sufficient to induce granin aggregation in the RER. In the TGN of pituitary GH4C1 cells, the proportion of granins conserved as aggregates was higher upon hormonal treatment known to increase secretory granule formation. Our data suggest that a decrease in pH and an increase in calcium are sufficient to trigger the selective aggregation of the granins in the TGN, segregating them from constitutive secretory proteins.


2011 ◽  
Vol 22 (12) ◽  
pp. 2094-2105 ◽  
Author(s):  
Jason Burgess ◽  
Miluska Jauregui ◽  
Julie Tan ◽  
Janet Rollins ◽  
Sylvie Lallet ◽  
...  

 Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing “glue granules” that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1– and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules.


2012 ◽  
Vol 23 (4) ◽  
pp. 756-768 ◽  
Author(s):  
Helmuth Gehart ◽  
Alexander Goginashvili ◽  
Rainer Beck ◽  
Joëlle Morvan ◽  
Eric Erbs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document