Physical mapping of the MEL gene family in Saccharomyces cerevisiae

1993 ◽  
Vol 24 (6) ◽  
pp. 461-464 ◽  
Author(s):  
Hilkka Turakainen ◽  
Gennadi Naumov ◽  
Elena Naumova ◽  
Matti Korhola

1984 ◽  
Vol 4 (1) ◽  
pp. 23-29
Author(s):  
A G Papageorge ◽  
D Defeo-Jones ◽  
P Robinson ◽  
G Temeles ◽  
E M Scolnick

A family of normal vertebrate genes and oncogenes has been called the ras gene family. The name ras was assigned to this gene family based on the species of origin of the viral oncogenes of the rat-derived Harvey and Kirsten murine sarcoma viruses. There are now three known functional members of the ras gene family, and genes homologous to ras genes have been detected in the DNA of a wide variety of mammals and in Drosophila melanogaster. Prior experiments have detected proteins coded for by ras genes in a large number of normal cells, cell lines, and tumors. We report here the detection of ras-related proteins in D. melanogaster, a result predicted by the earlier detection of ras-related genes in the Drosophila genome. We also report for the first time the detection of ras-related proteins in a single-cell eucaryocyte, Saccharomyces cerevisiae. These proteins, approximately 30K in size, are recognized by both a monoclonal antibody which binds to the p21 coded for by mammalian ras genes and a polyclonal rat serum made by transplanting a v-Ha-ras-induced tumor in Osborne-Mendel rats. The p21 of v-Ha-ras and the 30K proteins from S. cerevisiae share methionine-labeled peptides as detected by two-dimensional tryptic peptide maps. The results indicate that S. cerevisiae synthesizes ras-related proteins. A genetic analysis of the function of these proteins for yeast cells may now be possible.



Microbiology ◽  
2003 ◽  
Vol 149 (6) ◽  
pp. 1447-1460 ◽  
Author(s):  
Raymond Wightman ◽  
Peter A. Meacock

The THI5 gene family of Saccharomyces cerevisiae comprises four highly conserved members named THI5 (YFL058w), THI11 (YJR156c), THI12 (YNL332w) and THI13 (YDL244w). Each gene copy is located within the subtelomeric region of a different chromosome and all are homologues of the Schizosaccharomyces pombe nmt1 gene which is thought to function in the biosynthesis of hydroxymethylpyrimidine (HMP), a precursor of vitamin B1, thiamin. A comprehensive phylogenetic study has shown that the existence of THI5 as a gene family is exclusive to those yeasts of the Saccharomyces sensu stricto subgroup. To determine the function and redundancy of each of the S. cerevisiae homologues, all combinations of the single, double, triple and quadruple deletion mutants were constructed using a PCR-mediated gene-disruption strategy. Phenotypic analyses of these mutant strains have shown the four genes to be functionally redundant in terms of HMP formation for thiamin biosynthesis; each promotes synthesis of HMP from the pyridoxine (vitamin B6) biosynthetic pathway. Furthermore, growth studies with the quadruple mutant strain support a previous proposal of an alternative HMP biosynthetic pathway that operates in yeast under anaerobic growth conditions. Comparative analysis of mRNA levels has revealed subtle differences in the regulation of the four genes, suggesting that they respond differently to nutrient limitation.



Gene ◽  
1991 ◽  
Vol 109 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Takeshi Iwasaki ◽  
Katsuhiko Shirahige ◽  
Hiroshi Yoshikawa ◽  
Naotake Ogasawara


1993 ◽  
Vol 4 (7) ◽  
pp. 368-373 ◽  
Author(s):  
Daniel S. Gallagher ◽  
David W. Threadgill ◽  
Anne M. Ryan ◽  
James E. Womack ◽  
David M. Irwin


1990 ◽  
Vol 10 (5) ◽  
pp. 2341-2348 ◽  
Author(s):  
M Beltrame ◽  
M E Bianchi

We have cloned the genes for small acidic ribosomal proteins (A-proteins) of the fission yeast Schizosaccharomyces pombe. S. pombe contains four transcribed genes for small A-proteins per haploid genome, as is the case for Saccharomyces cerevisiae. In contrast, multicellular eucaryotes contain two transcribed genes per haploid genome. The four proteins of S. pombe, besides sharing a high overall similarity, form two couples of nearly identical sequences. Their corresponding genes have a very conserved structure and are transcribed to a similar level. Surprisingly, of each couple of genes coding for nearly identical proteins, one is essential for cell growth, whereas the other is not. We suggest that the unequal importance of the four small A-proteins for cell survival is related to their physical organization in 60S ribosomal subunits.





2008 ◽  
Vol 8 (2) ◽  
pp. 207-216 ◽  
Author(s):  
Moira M. Cockell ◽  
Libera Lo Presti ◽  
Lorenzo Cerutti ◽  
Elena Cano Del Rosario ◽  
Philippe M. Hauser ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, TBF1, an essential gene, influences telomere function but also has other roles in the global regulation of transcription. We have identified a new member of the tbf1 gene family in the mammalian pathogen Pneumocystis carinii. We demonstrate by transspecies complementation that its ectopic expression can provide the essential functions of Schizosaccharomyces pombe tbf1 but that there is no rescue between fission and budding yeast orthologues. Our findings indicate that an essential function of this family of proteins has diverged in the budding and fission yeasts and suggest that effects on telomere length or structure are not the primary cause of inviability in S. pombe tbf1 null strains.



1999 ◽  
Vol 294 (4) ◽  
pp. 897-907 ◽  
Author(s):  
Stacey A Garland ◽  
Kevin Hoff ◽  
Larry E Vickery ◽  
Valeria Cizewski Culotta


1990 ◽  
Vol 10 (5) ◽  
pp. 2341-2348
Author(s):  
M Beltrame ◽  
M E Bianchi

We have cloned the genes for small acidic ribosomal proteins (A-proteins) of the fission yeast Schizosaccharomyces pombe. S. pombe contains four transcribed genes for small A-proteins per haploid genome, as is the case for Saccharomyces cerevisiae. In contrast, multicellular eucaryotes contain two transcribed genes per haploid genome. The four proteins of S. pombe, besides sharing a high overall similarity, form two couples of nearly identical sequences. Their corresponding genes have a very conserved structure and are transcribed to a similar level. Surprisingly, of each couple of genes coding for nearly identical proteins, one is essential for cell growth, whereas the other is not. We suggest that the unequal importance of the four small A-proteins for cell survival is related to their physical organization in 60S ribosomal subunits.



Sign in / Sign up

Export Citation Format

Share Document