Ca2+ entry through the apical membrane reduces antidiuretic hormone-induced hydroosmotic response in toad urinary bladder

1990 ◽  
Vol 417 (3) ◽  
pp. 342-348 ◽  
Author(s):  
Willy Van Driessche ◽  
David Erlij ◽  
Isabelle Aelvoet
1986 ◽  
Vol 251 (2) ◽  
pp. C274-C284 ◽  
Author(s):  
H. W. Harris ◽  
J. B. Wade ◽  
J. S. Handler

Antidiuretic hormone (ADH) stimulation of toad urinary bladder causes fusion of intracellular vesicles called aggrephores with the apical plasma membrane of granular cells. Aggrephores contain intramembrane particle aggregates whose appearance in the apical membrane is believed to produce a large increase in its water permeability. ADH removal (ADH washout) is thought to cause the retrieval of aggrephores into granular cell cytoplasm. We studied granular cell uptake of dextran and horseradish peroxidase conjugated with fluorescein, rhodamine, or both during ADH washout. Granular cell uptake of fluorescent dextran was dependent on prior exposure to ADH, a linear function of dextran concentration, and increased by a transepithelial osmotic gradient. Immediately after removal of ADH, granular cell fluorescence was finely dispersed and located near the apical surface. Subsequently, it coalesced into larger bodies. This change was most apparent when a single bladder was subjected to two cycles of ADH stimulation and removal using a dextran containing a different fluorophore for each cycle. The ultrastructural correlate for these fluorescent patterns was identified using rhodamine-labeled horseradish peroxidase. Electron microscopy showed that after detachment from the apical membrane, label was initially in tubular-shaped vesicles near the apical surface. Later, these vesicles clustered near multivesicular bodies and transferred their label to these structures. These tubular vesicles closely resemble the morphology of aggrephores visualized by freeze-fracture electron microscopy. We conclude that these fluorescent compounds can be used as markers for the luminal contents of membrane retrieved during ADH washout and allow detailed study of its intracellular processing.


1984 ◽  
Vol 246 (4) ◽  
pp. F501-F508
Author(s):  
L. G. Palmer ◽  
N. Speez

To test the hypothesis that antidiuretic hormone- (ADH) dependent water permeability is associated with changes in apical membrane area, hormone-dependent water flow and capacitance changes were measured in the toad urinary bladder under a number of different conditions. Dose-response relationships for water flow (Jv) and capacitance increases (delta C) were similar from 1 to 20 mU/ml ADH. At higher concentrations, Jv reached a plateau, while delta C decreased. The decrease in delta C was prevented by elimination of the osmotic gradient across the tissue. Serosal hydrazine (10 mM) increased Jv sevenfold and delta C threefold in the presence of 1 mU/ml ADH. Mucosal NH4Cl, at constant mucosal pH, increased Jv by 50-100%, but did not significantly change delta C. In the absence of an osmotic gradient, mucosal NH+4 increased delta C by 50%. NH4Cl had no effect on hydroosmotic response to 8-bromo-adenosine 3',5'-cyclic monophosphate (cAMP). Mucosal CO2 (9%) decreased Jv by greater than 90%, and delta C by 60% with 20 mU/ml ADH. Mucosal CO2 also inhibited the hydroosmotic response to 8-bromo-cAMP. Removal of serosal Na diminished cAMP-dependent Jv and delta C. The results confirmed the close relationship between ADH-dependent water permeability and membrane capacitance. They indicate, however, that under some circumstances membrane may be retrieved from the apical surface without affecting water permeability.


1991 ◽  
Vol 1 (9) ◽  
pp. 1114-1122
Author(s):  
H W Harris

Antidiuretic hormone (ADH) dramatically increases the water permeability of toad urinary bladder by insertion of unique highly selective water channels into the apical membranes of granular cells. Before ADH stimulation, water channels are stored in high concentrations in the limiting membranes of large cytoplasmic vesicles called aggrephores. ADH stimulation causes aggrephore fusion with the granular cell apical membrane and increases water permeability. Transepithelial osmotic water flow causes a rapid attenuation of the ADH-elicited increase in water permeability through a process called flux inhibition. Flux inhibition is due to retrieval of ADH water channels by apical membrane endocytosis. When phosphoproteins of intact bladders are labeled with (32P)orthophosphate, the 32P content of 34-, 28-, and 17-kDa proteins is increased by ADH stimulation. When flux inhibition occurs, the 32P-labelling of a 15.5-kDa protein is reduced to approximately one half its original value (Konieczkowski M, Rudolph SA, J Pharmacol Exp Ther 1985;234:515). These observations have been confirmed, and these studies have been extended, by using a combination of subcellular fractionation and membrane protein chemistry techniques. All four of these phosphoproteins are present in membrane fractions of granular cells. Analysis of membrane proteins by a combination of Triton X-114 partitioning and an alkaline stripping technique reveals that the 28- and 17-kDa species are integral membrane proteins of unknown function. In contrast, the 32P-labeled 15.5-kDa protein is a peripheral membrane protein. It is attached to the cytoplasmic (outer) surface of highly water-permeable vesicles retrieved during flux inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 267 (1) ◽  
pp. C32-C38 ◽  
Author(s):  
R. A. Coleman ◽  
J. B. Wade

In the toad urinary bladder, the reversal of antidiuretic hormone (ADH) stimulation results in the endocytosis of apical membrane water channels, along with any fluid-phase marker present in the mucosal bathing solution. We have loaded vesicles with horseradish peroxidase (HRP), then restimulated the bladders and measured the reappearance of endocytosed HRP in the mucosal bath. HRP-loaded bladders that were restimulated showed HRP release that peaked sharply within 15 min after restimulation. Varying the interval between loading and restimulation did not vary HRP release significantly. Restimulation with forskolin gave HRP release values similar to ADH. The amount of HRP released correlated with the magnitude of water permeability induced. The demonstration that fluid-phase markers can be recycled from endosomes to the apical surface in a hormone-dependent fashion indicates that endocytosed membrane, containing water channels, is able to rapidly recycle back to the surface in response to hormone restimulation. In addition, marker release declined progressively with repeated restimulation, totaling < 30% of the retrieved amount. This result indicates that a relatively large proportion of the retrieved marker reaches a nonrecycling compartment.


Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

Protein kinase C (PKC) isozymes, when activated, are translocated to particulate membrane fractions for transport to the apical membrane surface in a variety of cell types. Evidence of PKC translocation was demonstrated in human megakaryoblastic leukemic cells, and in cardiac myocytes and fibroblasts, using FTTC immunofluorescent antibody labeling techniques. Recently, we reported immunogold localizations of PKC subtypes I and II in toad urinary bladder epithelia, following 60 min stimulation with Mezerein (MZ), a PKC activator, or antidiuretic hormone (ADH). Localization of isozyme subtypes I and n was carried out in separate grids using specific monoclonal antibodies with subsequent labeling with 20nm protein A-gold probes. Each PKC subtype was found to be distributed singularly and in discrete isolated patches in the cytosol as well as in the apical membrane domains. To determine if the PKC isozymes co-localized within the cell, a double immunogold labeling technique using single grids was utilized.


1983 ◽  
Vol 244 (2) ◽  
pp. F195-F204
Author(s):  
L. G. Palmer ◽  
M. Lorenzen

Antidiuretic hormone (ADH) increased the electrical capacitance of apical membrane of the toad bladder; this effect was modulated by the osmotic gradient across the tissue. Capacitance was measured from the transepithelial voltage response to constant-current pulses using bladders depolarized with KCl-sucrose serosal solution to reduce basolateral resistance and with Na-free mucosal solution to increase apical membrane resistance. Addition of ADH (20 mU/ml) increased capacitance by 28 +/- 9% (mean +/- SD) in the absence and by 8 +/- 3% in the presence of an osmotic gradient (200 mosM, mucosal side hypotonic). With bladders stimulated in the absence of an osmotic gradient, rapidly imposing a gradient resulted in a peak rate of water flow that declined to 40% of the peak value after 15-20 min. ADH-dependent capacitance also decreased with a similar time course. Removal of ADH reversed the capacitance change (t1/2 = 10-15 min), but the reversal was slower than the decline in water flow to basal levels (t1/2 less than 5 min). Colchicine and cytochalasin B also inhibited the ADH-induced capacitance increase. The capacitance change was also inhibited when the mucosal solution was made hypertonic with raffinose. The results are interpreted within the framework of a previously proposed model of ADH-stimulated water transport in which cytoplasmic vesicular structures fuse with the apical plasma membrane.


1994 ◽  
Vol 267 (1) ◽  
pp. F106-F113
Author(s):  
F. Emma ◽  
H. W. Harris ◽  
K. Strange

It is well established that water channels (WC) are removed from the apical membrane of vasopressin-sensitive epithelia by endocytosis. The processing and the ultimate fate of endocytosed WC is, however, incompletely understood. In many cells, endosome acidification plays an important role in the processing and sorting of endocytosed proteins. Endosome acidification in the toad urinary bladder was therefore examined in vivo by fluorescence ratio video microscopy after induction of endocytosis by vasopressin removal and transepithelial water flow in the presence of the pH-sensitive fluid phase marker 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-dextran. Fifteen minutes after induction of endocytosis, the majority of endosomes had a neutral or slightly acidic pH. The number of acidic endosomes increased progressively with time. Two hours after endocytosis began, 98% of the endosomes had a pH < 6.0. Bafilomycin completely blocked endosome acidification, indicating that H+ transport is mediated by a vacuolar H(+)-adenosinetriphosphatase. Bafilomycin had no effect on transepithelial water flow in bladders repetitively stimulated by vasopressin. These findings, as well as the work of other investigators, suggest that if WC recycling occurs, it is not dependent on acidification of the endosomal compartment. Acidification of vasopressin-induced endosomes most likely represents a terminal event in the endocytic pathway.


1992 ◽  
Vol 262 (5) ◽  
pp. C1109-C1118 ◽  
Author(s):  
E. B. Grossman ◽  
H. W. Harris ◽  
R. A. Star ◽  
M. L. Zeidel

Certain types of epithelial cells such as those lining the toad urinary bladder have been classified as "tight" because their apical membranes exhibit low permeabilities to water, ions, and small nonelectrolytes. However, the permeability properties and structural features of these specialized apical membranes remain unclear because these membranes have never been purified. To isolate toad bladder granular cell apical membranes, we derivatized the bladder apical surface with the membrane-impermeant bifunctional reagent N-hydroxysulfosuccinimydyl-S,S-biotin (NHS-SS-biotin). After cell disruption, these derivatized apical membranes were purified using streptavidin-coated magnetic beads in a magnetic field. With the use of lactoperoxidase-mediated radioiodination as a marker for apical membrane, this preparative procedure purified apical membrane 48- or 72-fold as compared with homogenate. Thin section electron microscopy revealed unilamellar vesicles with some nonvesiculated membranes, while fragments of organelles such as mitochondria were absent. Water and nonelectrolyte permeabilities of purified apical membrane vesicles were similar to those obtained in intact bladders in the absence of antidiuretic hormone stimulation. The results demonstrate that isolated apical vesicles do not contain water channels and confirm the applicability of Overton's rule to the apical membrane of the toad urinary bladder. The technique has general applicability to isolation of other plasma membranes, and the apical membranes obtained are suitable for structural analysis.


Sign in / Sign up

Export Citation Format

Share Document