Minor element abundances in olivines of the Sharps (H-3) chondrite

1973 ◽  
Vol 42 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Robert T. Dodd
1973 ◽  
Vol 3 (2) ◽  
pp. 307-315 ◽  
Author(s):  
M.J. Dudas ◽  
M.E. Harward ◽  
R.A. Schmitt

AbstractPrimary mineral phenocrysts from eight different late Quaternary pyroclastic deposits were fractionated for neutron-activation analysis with the purpose of characterizing each of the deposits on the basis of trace and minor element compositions. In hornblende separates, contents of several rare earth and transition elements were found to be distinctive for the Mazama, Glacier Peak, and several St. Helens deposits. In magnetites, abundances of transition elements are characteristic and serve as good discriminants for the pyroclastic deposits examined in this investigation. Contents of transition and rare earth elements in hyperthenes also appear useful in distinguishing volcanic ash deposits. Trace and minor element abundances in plagioclase phenocrysts did not appear adequate for identification of pyroclastics due to elemental depletion and similarity of contents for feldspar separates. It was found that contents of Sm and Yb in hornblende phenocrysts would serve to distinguish between several pyroclastic deposits from the Pacific Northwest.


1986 ◽  
Vol 50 (358) ◽  
pp. 559-565 ◽  
Author(s):  
R. Hutchison ◽  
C. T. Williams ◽  
P. Henderson ◽  
S. J. B. Reed

AbstractSpinel lherzolite xenoliths from two localities in the Massif Central are undepleted in Al2O3, CaO, and Na2O. One suite from Tarreyres, is K2O depleted and amphibole-bearing whereas the other, from Monistrol d'Allier some 18 km away, is amphibole-free and has a higher mean K2O content of 0.035 wt.%. We present bulk major and minor element abundances in a harzburgite and a lherzolite from each locality and microprobe analyses of their constituent phases. Amphibole-bearing lherzolite and its pyroxenes are light-rare earth element (LREE) depleted, whereas amphibole-free lherzolite and its pyroxenes are LREE enriched. Both harzburgites and their pyroxenes are LREE enriched and one rock contains LREE enriched glass. The harzburgites are like harzburgite xenoliths from elsewhere but each lherzolite represents a previously unrecognized type of mantle in terms of the mineralogy and REE content. The implication for basalt genesis are briefly discussed.


2006 ◽  
Vol 78 (3) ◽  
pp. 525-541 ◽  
Author(s):  
Liane M. Calarge ◽  
Alain Meunier ◽  
Bruno Lanson ◽  
Milton L.L. Formoso

A Permian bentonite deposit at Melo, Uruguay is composed of a calcite-cemented sandstone containing clay pseudomorphs of glass shards (0-0.50 m) overlying a pink massive clay deposit (0.50-2.10m). The massive bed is composed of two layers containing quartz and smectite or pure smectite respectively. The smectite is remarkably homogeneous throughout the profile: it is a complex mixed layer composed of three layer types whose expandability with ethylene glycol (2EG 1EG or 0EG sheets in the interlayer zone which correspond to low-, medium- and high-charge layers respectively) varies with the cation saturating the interlayer zone. The smectite homogeneity through the profile is the signature of an early alteration process in a lagoonal water which was over saturated with respect to calcite. Compaction during burial has made the bentonite bed a K-depleted closed system in which diagenetic illitization was inhibited. Variations in major, REE and minor element abundances throughout the massive clay deposit suggest that it originated from two successive ash falls. The incompatible element abundances are consistent with that of a volcanic glass fractionated from a rhyolite magma formed in a subduction/collision geological context.


2021 ◽  
Author(s):  
John Pernet-Fisher ◽  
Margaret Hartley ◽  
Kathrine Joy

<p>Metamorphic rocks on the Moon are an important yet under-studied suite of lunar lithologies that have been identified in the Apollo and lunar meteorite collections [1]. These rocks, with granoblastic textures, are generally referred to as granulites; however, unlike their terrestrial counterparts, they are considered to represent the products of only high-temperature (> 1000 <sup>o</sup>C) thermal metamorphism that completely re-crystallised their protolith(s). Lunar granulites are commonly sub-divided into two main compositional groups related to their protolith lithologies. The Fe-granulites, found at most Apollo landing sites, are generally accepted to derive from metamorphosed plagioclase-rich igneous cumulates, termed the ferroan anorthosite (FAN) suite. The FAN suite are important lithologies as they represent products of the primary lunar crust. The Mg-granulites are found mostly at the Apollo 16 landing site and within lunar meteorite samples; the protolith(s) of this latter group is not well understood [2].  Early studies have linked the protolith to secondary magmatic intrusions into the primary anorthositic crust (termed the Mg-suite); however, recent studies have tentatively connected the protolith to a Mg-rich variation of the primary crustal plagioclase cumulates (termed the MAN suite). The occurrence of MANs is controversial, it is unclear how the MAN suite fits into canonical lunar crustal formation models [3]. To investigate the protoliths of the granulite suites, we report in situ trace- and minor-element abundances for olivine and pyroxene grains within Fe- and Mg-granulites, determined by LA-ICP-MS and EPMA respectively. Trace-element data presented here indicate that the Mg-granulites are compositionally similar to the MAN suite. Furthermore, by comparing plagioclase trace-element data with peak metamorphic temperatures (calculated using two-pyroxene thermometers [4]), we find no relationship between metamorphic temperature and diagnostic trace-element signatures suggesting that both granulite suites experienced similar thermal metamorphic conditions. Additionally, we estimate the duration of metamorphic heating using experimentally derived diffusion rates of minor elements in minerals,  (such as Ca in olivine [5]). Both the calculated cooling rates and peak metamorphic temperatures can set constraints on the metamorphic heat source responsible for thermally annealing the Fe- and Mg-granulites. Specifically, we are able to assess whether the granulites formed as a result of shallow (<1 km) burial of the protolith by impact melt sheets or hot, impact-generated fall-back breccias [6]; or deep (> 1km) contact metamorphism of the protolith due to the emplacement of magma chambers or upwelling plutons within the lunar crust [7].</p><p> </p><p>[1] Lindstrom & Lindstrom, 1986, JGR, 91(B4), 263-276 [2] Treiman et al. 2010. MaPS, 45, 163-180. [3] Gross et al. 2014, EPSL, 388, 318-328. [4] Brey & Köhler, 1990, J Pet, 31, 1353-1378. [5] Dohmen et al, 2007, PCM, 34, 389-407. [6] Cushing et al. 1999, MaPS, 34, 185-195. [7] Hudgins et al. 2011, Am Min, 96, 1673-1685.</p>


1997 ◽  
Vol 34 (9) ◽  
pp. 1185-1201 ◽  
Author(s):  
David P. Moecher ◽  
Eric D. Anderson ◽  
Claudia A. Cook ◽  
Klaus Mezger

Veins and dikes of calcite-rich rocks within the Central Metasedimentary Belt boundary zone (CMBbz) in the Grenville Province of Ontario have been interpreted to be true carbonatites or to be pseudocarbonatites derived from interaction of pegmatite melts and regional Grenville marble. The putative carbonatites have been metamorphosed and consist mainly of calcite, biotite, and apatite with lesser amounts of clinopyroxene, magnetite, allanite, zircon, titanite, cerite, celestite, and barite. The rocks have high P and rare earth element (REE) contents, and calcite in carbonatite has elevated Sr, Fe, and Mn contents relative to Grenville Supergroup marble and marble mélange. Values of δ18OSMOW (9.9–13.3‰) and δ13CPDB (−4.8 to −1.9‰) for calcite are also distinct from those for marble and most marble mélange. Titanites extracted from clinopyroxene–calcite–scapolite skarns formed by metasomatic interaction of carbonatites and silicate lithologies yield U–Pb ages of 1085 to 1035 Ma. Zircon from one carbonatite body yields a U–Pb age of 1089 ± 5 Ma; zircon ages from two other bodies are 1170 ± 3 and 1143 ± 8 Ma, suggesting several carbonatite formation events or remobilization of carbonatite during deformation and metamorphism around 1080 Ma. Values of εNd(T) are 1.7–3.2 for carbonatites, −1.5–1.0 for REE-rich granite dikes intruding the CMBbz, and 1.6–1.7 for marble. The mineralogy and geochemical data are consistent with derivation of the carbonatites from a depleted mantle source. Mixing calculations indicate that interaction of REE-rich pegmatites with regional marbles cannot reproduce selected major and minor element abundances, REE contents, and O and Nd isotope compositions of the carbonatites.


1988 ◽  
Vol 132 ◽  
pp. 501-506
Author(s):  
C. Sneden ◽  
C. A. Pilachowski ◽  
K. K. Gilroy ◽  
J. J. Cowan

Current observational results for the abundances of the very heavy elements (Z>30) in Population II halo stars are reviewed. New high resolution, low noise spectra of many of these extremely metal-poor stars reveal general consistency in their overall abundance patterns. Below Galactic metallicities of [Fe/H] Ã −2, all of the very heavy elements were manufactured almost exclusively in r-process synthesis events. However, there is considerable star-to-star scatter in the overall level of very heavy element abundances, indicating the influence of local supernovas on element production in the very early, unmixed Galactic halo. The s-process appears to contribute substantially to stellar abundances only in stars more metal-rich than [Fe/H] Ã −2.


Sign in / Sign up

Export Citation Format

Share Document