Does N2 fixation meet the nitrogen requirements of heterocystous blue-green algae in shallow eutrophic lakes?

Oecologia ◽  
1984 ◽  
Vol 63 (3) ◽  
pp. 398-404 ◽  
Author(s):  
Lars Leonardson
2011 ◽  
Vol 11 (2) ◽  
pp. 69-79 ◽  
Author(s):  
Ewa Dembowska

Cyanobacterial blooms in shallow lakes of the Iławskie Lake DistrictThe dominance of blue-green algae observed in many lakes is related to a high trophic level. Shallow eutrophic lakes are particularly often abundant in blue-green algae. The research on phytoplankton, the results of which are presented in this paper, was carried out between 2002 and 2005 in six lakes. These lakes differed considerably in their size and management methods applied in the catchment (drainage) area. A few types of water blooms were distinguished, which is related to the catchment area management, the intensity of mixing and the trophic level. Algal blooms of the Planktothrix type appeared in lakes situated in an open area of agricultural catchment basins. Algal blooms of the Limnothrix type were characteristic of lakes with a forest-agricultural catchment area but surrounded by high shores, which reduced the wind influence on the mixing. Sporadic mixed algal blooms were typical of lakes situated in forest catchment areas.


1992 ◽  
Vol 49 (11) ◽  
pp. 2331-2336 ◽  
Author(s):  
D. J. Webb ◽  
B. K. Burnison ◽  
A. M. Trimbee ◽  
E. E. Prepas

Chlorophyll a (Chl a) in water samples from three mesotrophic to eutrophic lakes in north-central Alberta was extracted with one of three solvents (95% ethanol, 90% ethanol, or a 2:3 mixture of dimethyl sulfoxide and 90% acetone (DMSO/acetone)) and analyzed by two techniques (spectrophotometry and high pressure liquid chromatography (HPLC). The dominant phytoplankton were blue-green algae and diatoms. Total Chl a concentrations (i.e. no correction for phaeopigments (Pha)) were not significantly different among solvents (P > 0.5). Total Chl a concentrations from spectrophotometric analyses were significantly higher than those from HPLC analyses (4.2 ± 0.88 and 2.6 ± 0.50 μg∙L−1 respectively, P < 0.05). Pha concentrations derived by spectrophotometry were 64 times higher than those derived by HPLC (1.7 ± 0.52 and 0.025 ± 0.01 μg∙L−1 respectively, P < 0.005). Thus, spectrophotometry appears to dramatically overestimate Pha concentrations and may overestimate total Chl a (i.e. no correction for Pha). Therefore, ethanol and DMSO/acetone are equally suitable for Chl a extraction from natural populations dominated by blue-green algae and/or diatoms, but if information on Pha and/or accessory pigments is required, HPLC analyses are the appropriate route rather than spectrophotometry.


1977 ◽  
Vol 59 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Richard B. Peterson ◽  
Eugene E. Friberg ◽  
R. H. Burris

2008 ◽  
Vol 57 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Kazuo Taki ◽  
Tatsuhiro Seki ◽  
Sakiyori Mononobe ◽  
Kohichi Kato

Any kind of blue-green alga produces metabolites of musty substances and toxins. Therefore, it is necessary to remove the blue-green algae, and processing also including nutrient removal is desired for the water quality improvement of eutrophic lakes. The purpose of this study has been to investigate the possibility of a flotation system using a hybrid technique (chemical compounds and electrostatic bridge) applied to raw water containing phytoplankton with high pH of water, and to examine the zeta potential value of phytoplankton surface and the removal efficiency for phytoplankton, ammonia, nitrogen, and phosphoric acid. The results were as follows: firstly, zeta potential of M. aeruginosa particles was observed to achieve charge neutralization on their surface by adhesion of magnesium hydroxide precipitation with increasing pH. Secondly, maximum removal efficiency concerning chlorophyll-a was observed as 84%, and this efficiency was obtained in the condition of pH &gt; 10, and magnesium hydroxide precipitation was observed. Thirdly, in the pH condition that the maximum removal efficiency of chlorophyll-a was obtained, the removal efficiency and the amount of decrease of NH4-N and PO4-P before and after the change of pH values were observed as 6.7% (0.04 mg-P/L) and 63.6% (0.07 mg-N/L), respectively.


Author(s):  
L. V. Leak

Electron microscopic observations of freeze-fracture replicas of Anabaena cells obtained by the procedures described by Bullivant and Ames (J. Cell Biol., 1966) indicate that the frozen cells are fractured in many different planes. This fracturing or cleaving along various planes allows one to gain a three dimensional relation of the cellular components as a result of such a manipulation. When replicas that are obtained by the freeze-fracture method are observed in the electron microscope, cross fractures of the cell wall and membranes that comprise the photosynthetic lamellae are apparent as demonstrated in Figures 1 & 2.A large portion of the Anabaena cell is composed of undulating layers of cytoplasm that are bounded by unit membranes that comprise the photosynthetic membranes. The adjoining layers of cytoplasm are closely apposed to each other to form the photosynthetic lamellae. Occassionally the adjacent layers of cytoplasm are separated by an interspace that may vary in widths of up to several 100 mu to form intralamellar vesicles.


Sign in / Sign up

Export Citation Format

Share Document