scholarly journals Cyanobacterial blooms in shallow lakes of the Iławskie Lake District

2011 ◽  
Vol 11 (2) ◽  
pp. 69-79 ◽  
Author(s):  
Ewa Dembowska

Cyanobacterial blooms in shallow lakes of the Iławskie Lake DistrictThe dominance of blue-green algae observed in many lakes is related to a high trophic level. Shallow eutrophic lakes are particularly often abundant in blue-green algae. The research on phytoplankton, the results of which are presented in this paper, was carried out between 2002 and 2005 in six lakes. These lakes differed considerably in their size and management methods applied in the catchment (drainage) area. A few types of water blooms were distinguished, which is related to the catchment area management, the intensity of mixing and the trophic level. Algal blooms of the Planktothrix type appeared in lakes situated in an open area of agricultural catchment basins. Algal blooms of the Limnothrix type were characteristic of lakes with a forest-agricultural catchment area but surrounded by high shores, which reduced the wind influence on the mixing. Sporadic mixed algal blooms were typical of lakes situated in forest catchment areas.

2016 ◽  
Vol 76 (s1) ◽  
Author(s):  
Mariano Bresciani ◽  
Claudia Giardino ◽  
Rosaria Lauceri ◽  
Erica Matta ◽  
Ilaria Cazzaniga ◽  
...  

Cyanobacterial blooms occur in many parts of the world as a result of entirely natural causes or human activity. Due to their negative effects on water resources, efforts are made to monitor cyanobacteria dynamics. This study discusses the contribution of remote sensing methods for mapping cyanobacterial blooms in lakes in northern Italy. Semi-empirical approaches were used to flag scum and cyanobacteria and spectral inversion of bio-optical models was adopted to retrieve chlorophyll-a (Chl-a) concentrations. Landsat-8 OLI data provided us both the spatial distribution of Chl-a concentrations in a small eutrophic lake and the patchy distribution of scum in Lake Como. ENVISAT MERIS time series collected from 2003 to 2011 enabled the identification of dates when cyanobacterial blooms affected water quality in three small meso-eutrophic lakes in the same region. On average, algal blooms occurred in the three lakes for about 5 days a year, typically in late summer and early autumn. A suite of hyperspectral sensors on air- and space-borne platforms was used to map Chl-a concentrations in the productive waters of the Mantua lakes, finding values in the range of 20 to 100 mgm-3. The present findings were obtained by applying state of the art of methods applied to remote sensing data. Further research will focus on improving the accuracy of cyanobacteria mapping and adapting the algorithms to the new-generation of satellite sensors.


1992 ◽  
Vol 49 (11) ◽  
pp. 2331-2336 ◽  
Author(s):  
D. J. Webb ◽  
B. K. Burnison ◽  
A. M. Trimbee ◽  
E. E. Prepas

Chlorophyll a (Chl a) in water samples from three mesotrophic to eutrophic lakes in north-central Alberta was extracted with one of three solvents (95% ethanol, 90% ethanol, or a 2:3 mixture of dimethyl sulfoxide and 90% acetone (DMSO/acetone)) and analyzed by two techniques (spectrophotometry and high pressure liquid chromatography (HPLC). The dominant phytoplankton were blue-green algae and diatoms. Total Chl a concentrations (i.e. no correction for phaeopigments (Pha)) were not significantly different among solvents (P > 0.5). Total Chl a concentrations from spectrophotometric analyses were significantly higher than those from HPLC analyses (4.2 ± 0.88 and 2.6 ± 0.50 μg∙L−1 respectively, P < 0.05). Pha concentrations derived by spectrophotometry were 64 times higher than those derived by HPLC (1.7 ± 0.52 and 0.025 ± 0.01 μg∙L−1 respectively, P < 0.005). Thus, spectrophotometry appears to dramatically overestimate Pha concentrations and may overestimate total Chl a (i.e. no correction for Pha). Therefore, ethanol and DMSO/acetone are equally suitable for Chl a extraction from natural populations dominated by blue-green algae and/or diatoms, but if information on Pha and/or accessory pigments is required, HPLC analyses are the appropriate route rather than spectrophotometry.


2021 ◽  
Vol 12 (6) ◽  
pp. 271-277
Author(s):  
Nicola Bates

Blue-green algae are cyanobacteria that grow in fresh, brackish or sea water. Under certain environmental conditions they form blooms in water bodies and these often colour the water blue-green (or brown, black or red). These blooms have long been known to be associated with animal deaths, occasionally resulting in mass mortality events of wildlife. Cyanotoxins produced by these organisms are neurotoxic, hepatotoxic or, less commonly, dermatotoxic. Gastrointestinal effects may also occur. Signs can be very rapid in onset, particularly with neurotoxic compounds, with death following soon after. Hepatic effects generally occur within 24 hours. Aggressive and rapid treatment is essential with decontamination, liver protectants and supportive care. Survival is rare in animals with significant clinical signs. Not all algal blooms are toxic, however, and confirmation of exposure is rarely available and not within a clinically relevant time frame. Illness and deaths in dogs associated with suspected blue-green algae exposure are signal events and should be reported to the relevant environmental authority to safeguard public and animal health.


2000 ◽  
Vol 35 (3) ◽  
pp. 489-504 ◽  
Author(s):  
Daniel D. Olding

Abstract An investigation into phytoplankton and periphyton algal communities of two recently constructed Stormwater management ponds suggests that Stormwater impacts on biological communities are reduced during passage through the ponds, providing a degree of protection for biological communities in their receiving waters. In both ponds, disturbance effects from the incoming Stormwater on algal community richness and evenness appear to be greatest in the sediment forebay and are reduced in the main pond. However, the nature of the disturbance in the two systems can be seen to be fundamentally different from a biological perspective, with Rouge Pond functioning primarily to reduce toxins harmful to algal communities (e.g., heavy metals), and Harding Pond acting to reduce nutrients. The taxonomic composition of the two sites provides an indication of the quality of the incoming Stormwater. Rouge Pond, which contains many marine and brackish water species, receives Stormwater runoff from a major highway, while Harding Pond, containing more nutrient rich species, receives Stormwater primarily from residential properties. Despite the nutrient-rich conditions present in both ponds, nuisance blue-green algae (cyanobacte-ria) are conspicuously absent, and the ponds appear to have little potential for developing harmful algal blooms. The lack of blue-green algae can be linked to the hydraulic functioning of the ponds, suggesting that Stormwater facilities may be engineered to inhibit undesirable algal communities.


1992 ◽  
Vol 25 (2) ◽  
pp. 147-154 ◽  
Author(s):  
S. L. Kenefick ◽  
S. E. Hrudey ◽  
E. E. Prepas ◽  
N. Motkosky ◽  
H. G. Peterson

Algal blooms in eutrophic lakes have been regarded by some as primarily an aesthetic nuisance for recreational and drinking water uses despite well documented incidents of livestock and wildlife poisoning attributed to cyanobacterial toxins. A survey was conducted of three eutrophic, water supply lakes and eight rural dugouts experiencing cyanobacterial blooms. Biomass was characterized for dominant cyanobacterial genera and analyses were conducted for the hepatotoxins, microcystin LR and RR and the neurotoxin, anatoxin-a. Some water samples collected simultaneously were screened for geosmin, 2-methylisoborneol and β-cyclocitral. Results showed that microcystin LR (LD50 of 50 µg/kg in mice) was present in concentrations up to 500 µg/g of algal biomass and microcystin LR levels were generally related to the proportion of Microcystis in the collected algal biomass. There was no relationship between the presence of microcystin LR and the presence of any of the odour compounds. Consequently, cyanobacterial odour-causing compounds in water did not provide reliable warning of the presence of the microcystin LR in these cyanobacterial blooms.


Author(s):  
Haidong Liu ◽  
Zhongquan Charlie Zheng ◽  
Bryan Young

In this study, a three-dimensional model coupling hydrodynamics with algae transport dynamics is investigated. The hydrodynamic model solves the three-dimensional Navier-Stokes equations by a semi-implicit, fractional step method, where the hydrostatic components are determined first and the non-hydrostatic pressure and other components are determined in a subsequent step. Wind velocity on the water surface is accounted for the effect of wind stress on the flow velocities in the hydrodynamic model. Then, the model is coupled with an algae transport model, which enables simulation of algae transport and algal blooms. As an example, the model is implemented to analyze the transition of blue-green algae in Milford Lake, which is the largest man-made lake in Kansas suffering from blue-green algae blooms. The three-dimensional model provides a robust and efficient way for hydrodynamic and algae modeling and can be implemented to studies on different types of rivers and reservoirs easily. The simulated results can be very useful for algae control and prediction in both short and long terms.


1970 ◽  
Vol 175 (1041) ◽  
pp. 351-366 ◽  

Measurements of the fixation of molecular nitrogen have been made using 15 N as a tracer in the open waters of the north and south basins of Windermere and Esthwaite Water, English Lake District, at intervals of approximately 6 weeks over a period of 17 months. Fixation was light dependent (although occasionally appreciable in the dark) and correlated with the presence of heterocystous blue-green algae in the plankton. Examination of the data by multiple regression analysis showed a statistically significant positive correlation of rate of fixation with the concentration of organic nitrogen in the water. Although fixation was generally confined to periods when the concentration of nitrate nitrogen in the water was below 0.3 mg l -1 there was no statistically significant negative correlation of rate of fixation with nitrate concentration. The annual contribution of nitrogen fixation by planktonic blue-green algae is estimated as 0.037 to 0.287 g N m -2 , being greatest in the early stage of eutrophication represented by the south basin of Windermere. Although nitrogen fixation by plankton algae probably contributes less than 1% of the total nitrogen income of these lakes it may nevertheless be a major source of combined nitrogen for the plankton at particular times.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2871
Author(s):  
Vladimír Frišták ◽  
H. Dail Laughinghouse ◽  
Stephen M. Bell

Harmful algal blooms have increased globally with warming of aquatic environments and increased eutrophication. Proliferation of cyanobacteria (blue-green algae) and the subsequent flux of toxic extracellular microcystins present threats to public and ecosystem health and challenges for remediation and management. Although methods exist, there is currently a need for more environmentally friendly and economically and technologically feasible sorbents. Biochar has been proposed in this regard because of its high porosity, chemical stability, and notable sorption efficiency for removing of cyanotoxins. In light of worsening cyanobacterial blooms and recent research advances, this review provides a timely assessment of microcystin removal strategies focusing on the most pertinent chemical and physical sorbent properties responsible for effective removal of various pollutants from wastewater, liquid wastes, and aqueous solutions. The pyrolysis process is then evaluated for the first time as a method for sorbent production for microcystin removal, considering the suitability and sorption efficiencies of pyrolysed materials and biochar. Inefficiencies and high costs of conventional methods can be avoided through the use of pyrolysis. The significant potential of biochar for microcystin removal is determined by feedstock type, pyrolysis conditions, and the physiochemical properties produced. This review informs future research and development of pyrolysed materials for the treatment of microcystin contaminated aquatic environments.


1983 ◽  
Vol 15 (6-7) ◽  
pp. 229-240 ◽  
Author(s):  
George P Slater ◽  
Vivian C Blok

Buffalo Pound Lake in southern Saskatchewan, Canada, is subject to heavy blooms of blue-green algae, mainly Anabaena, Oscillatoria and Aphanizomenon. The occurrence of any of these species is usually followed by the appearance of pronounced tastes and odours. Water samples were extracted using a Likens- Nickerson or continuous liquid-liquid apparatus and capillary GC of the extracts showed that a large number of compounds are always present although the taste and odour vary in intensity. Many of these compounds have been identified using capillary GC-MS. Geosmin, which imparts a muddy flavour to water, was detected but methylisoborneol was absent. Other compounds present in the water included alkanes, alkylbenzenes, acetophenone, cyclohexanone, phenylacetonitrile, and α-pinene, some of which could affect the palatability of the water. Although some water samples had a musty odour extracts were frequently dominated by a pungent, smoky or tobacco flavour consistent with the presence of β-cyclocitral which was also indicated by GC-MS.


Sign in / Sign up

Export Citation Format

Share Document