A kinetic model for the ultrasound catalyzed hydrolysis of solventless TEOS-water mixtures and the role of the initial additions of ethanol

1996 ◽  
Vol 6 (1) ◽  
pp. 57-63 ◽  
Author(s):  
D. R. Vollet ◽  
D. A. Donatti ◽  
J. R. Campanha
Keyword(s):  
2021 ◽  
Author(s):  
Luna Luo ◽  
Zhen Wang ◽  
Qin Guo ◽  
Xipeng Wei ◽  
Jianpeng Hu ◽  
...  

Abstract Sulfate radical (SO4•−) and its secondary radical (hydroxyl radical, •OH) are commonly recognized as the primary reactive intermediates formed by Fe(III)/sulfite system. However, it still remains unknown whether Fe(IV) is involved in this system where the well documented Fe(IV)-precursors (i.e., Fe(II) and persulfates) were in-situ generated. Intriguingly, we observed that methyl phenyl sulfone (PMSO2), indicative of Fe(IV) formation, was formed during methyl phenyl sulfoxide (PMSO) transformation in Fe(III)/sulfite system, which unprecedently verified that Fe(IV) played a crucial role in it. In parallel, the involvement of SO4•− and •OH in this system were also identified, but the limited •OH was proposed to be derived from hydrolysis of both Fe(IV) and SO4•−, rather than by self-decay of SO4•− alone. Moreover, the contribution of Fe(IV) relative to it of free radicals was explored by monitoring the yield of PMSO2. It was disclosed that the relative contribution of Fe(IV) was progressively promoted as Fe(III)-sulfite reaction proceeding with an upper limit of 80%-90%, and it was accelerated by promoting Fe(III) and sulfite dosages, while was declined with increasing pH. Furthermore, a kinetic model was developed, which precisely simulated kinetic traces of PMSO transformation and dissolved oxygen evolution in Fe(III)/sulfite system. More importantly, the kinetic model offered the first insight into the evolution of Fe(IV), SO4•−, and •OH, which provided in-depth mechanistic understanding of the iron-catalyzed sulfite auto-oxidation process. Considering the different chemical properties between Fe(IV) and free radicals, it is urgent to re-evaluate the decontamination process by iron/sulfite system.


2019 ◽  
Vol 14 (02) ◽  
pp. 101-114 ◽  
Author(s):  
Vladimir P. Zhdanov

The understanding of the interplay between cancer and the immune system is still limited. Herein, I focus on two aspects of this interplay. First, I propose a kinetic model describing the likely role of the immune system in the lifetime risk of cancer at the level of the whole human population. For each tissue, the risk is predicted to be influenced by the heterogeneity of the population and to depend exponentially on time. The expression for the risk does not, however, depend explicitly on the total number of divisions of the corresponding stem cells. For this reason, the correlation with the latter number can only be indirect. Second, using another kinetic framework, I describe how the growth of a few tumors can depend on their interaction via the immune system. The analysis shows that depending on specific details, the tumors of different sizes tend either to reach the same size or remain to be of different sizes.


1981 ◽  
Vol 22 (3) ◽  
pp. 506-513 ◽  
Author(s):  
D M Foster ◽  
M Berman
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2852
Author(s):  
Paul A. Foster

Steroid sulphatase (STS), involved in the hydrolysis of steroid sulphates, plays an important role in the formation of both active oestrogens and androgens. Since these steroids significantly impact the proliferation of both oestrogen- and androgen-dependent cancers, many research groups over the past 30 years have designed and developed STS inhibitors. One of the main contributors to this field has been Prof. Barry Potter, previously at the University of Bath and now at the University of Oxford. Upon Prof. Potter’s imminent retirement, this review takes a look back at the work on STS inhibitors and their contribution to our understanding of sulphate biology and as potential therapeutic agents in hormone-dependent disease. A number of potent STS inhibitors have now been developed, one of which, Irosustat (STX64, 667Coumate, BN83495), remains the only one to have completed phase I/II clinical trials against numerous indications (breast, prostate, endometrial). These studies have provided new insights into the origins of androgens and oestrogens in women and men. In addition to the therapeutic role of STS inhibition in breast and prostate cancer, there is now good evidence to suggest they may also provide benefits in patients with colorectal and ovarian cancer, and in treating endometriosis. To explore the potential of STS inhibitors further, a number of second- and third-generation inhibitors have been developed, together with single molecules that possess aromatase–STS inhibitory properties. The further development of potent STS inhibitors will allow their potential therapeutic value to be explored in a variety of hormone-dependent cancers and possibly other non-oncological conditions.


1983 ◽  
Vol 258 (22) ◽  
pp. 13673-13679 ◽  
Author(s):  
A Gómez-Puyou ◽  
G Ayala ◽  
U Muller ◽  
M Tuena de Gómez-Puyou

2016 ◽  
Vol 199 ◽  
pp. 49-58 ◽  
Author(s):  
Shaoni Sun ◽  
Shaolong Sun ◽  
Xuefei Cao ◽  
Runcang Sun

2015 ◽  
Vol 1 (7) ◽  
pp. e1500263 ◽  
Author(s):  
Akihiko Nakamura ◽  
Takuya Ishida ◽  
Katsuhiro Kusaka ◽  
Taro Yamada ◽  
Shinya Fushinobu ◽  
...  

Hydrolysis of carbohydrates is a major bioreaction in nature, catalyzed by glycoside hydrolases (GHs). We used neutron diffraction and high-resolution x-ray diffraction analyses to investigate the hydrogen bond network in inverting cellulase PcCel45A, which is an endoglucanase belonging to subfamily C of GH family 45, isolated from the basidiomycete Phanerochaete chrysosporium. Examination of the enzyme and enzyme-ligand structures indicates a key role of multiple tautomerizations of asparagine residues and peptide bonds, which are finally connected to the other catalytic residue via typical side-chain hydrogen bonds, in forming the “Newton’s cradle”–like proton relay pathway of the catalytic cycle. Amide–imidic acid tautomerization of asparagine has not been taken into account in recent molecular dynamics simulations of not only cellulases but also general enzyme catalysis, and it may be necessary to reconsider our interpretation of many enzymatic reactions.


1988 ◽  
Vol 255 (3) ◽  
pp. 895-899 ◽  
Author(s):  
J Woodward ◽  
M Lima ◽  
N E Lee

Microcrystalline cellulose (10 mg of Avicel/ml) was hydrolysed to glucose by different concentrations of the purified cellulase components endoglucanase (EG) II and cellobiohydrolases (CBH) I and II, alone and in combination with each other, in the presence of excess beta-glucosidase. At a concentration of 360 micrograms/ml (160 micrograms of EG II/ml, 100 micrograms of CBH I/ml and 100 micrograms of CBH II/ml) the degree of synergism among them was negligible. As the concentration of cellulase decreased, the degree of synergism increased, reaching an optimum at 20 micrograms/ml (5 micrograms of EG II/ml, 10 micrograms of CBH I/ml and 5 micrograms of CBH II/ml). There was no apparent relationship between the ratio of the components and the degree of synergism. The latter is probably due, though it could not be proved, to the level of saturation of the substrate with each component. Inhibition of Avicel hydrolysis was observed when the substrate was incubated with saturating and nonsaturating concentrations of a mixture of EG II and CBH I respectively. A similar result was also observed with a combination of EG I and EG II.


2007 ◽  
Vol 79 (4) ◽  
pp. 481-490 ◽  
Author(s):  
Angelo Fontana ◽  
Giuliana d'Ippolito ◽  
Adele Cutignano ◽  
Antonio Miralto ◽  
Adrianna Ianora ◽  
...  

Oxylipins are important signal transduction molecules widely distributed in animals and plants where they regulate a variety of events associated with physiological and pathological processes. The family embraces several different metabolites that share a common origin from the oxygenase-catalyzed oxidation of polyunsaturated fatty acids. The biological role of these compounds has been especially studied in mammalians and higher plants, although a varied and very high concentration of these products has also been reported from marine macroalgae. This article gives a summary of our results concerning the oxylipin chemistry of marine diatoms, a major class of planktonic microalgae that discourage predation from their natural grazers, zooplanktonic copepods, using chemical warfare. These apparently harmless microscopic cells produce a plethora of oxylipins, including short-chain unsaturated aldehydes, hydroxyl-, keto-, and epoxyhydroxy fatty acid derivatives, that induce reproductive failure in copepods through abortions, congenital malformations, and reduced larval growth. The biochemical process involved in the production of these compounds shows a simple regulation based on decompartmentation and mixing of preexisting enzymes and requires hydrolysis of chloroplast-derived glycolipids to feed the downstream activities of C16 and C20 lipoxygenases.


Sign in / Sign up

Export Citation Format

Share Document