Genetic manipulation of the restricted facultative methylotroph Hyphomicrobium X by the R-plasmid-mediated introduction of the Escherichia coli pdh genes

1984 ◽  
Vol 139 (4) ◽  
pp. 311-318 ◽  
Author(s):  
L. Dijkhuizen ◽  
W. Harder ◽  
L. de Boer ◽  
A. van Boven ◽  
W. Clement ◽  
...  
2020 ◽  
Vol 5 (3) ◽  
pp. 200-205 ◽  
Author(s):  
Zhu Li ◽  
Dongqin Ding ◽  
Huiying Wang ◽  
Linxia Liu ◽  
Huan Fang ◽  
...  

2009 ◽  
Vol 31 (12) ◽  
pp. 1867-1871 ◽  
Author(s):  
Lian Hua Luo ◽  
Pil-Soo Seo ◽  
Jeong-Woo Seo ◽  
Sun-Yeon Heo ◽  
Dae-Hyuk Kim ◽  
...  

2021 ◽  
Author(s):  
Zhixin Lyu ◽  
Atsushi Yahashiri ◽  
Xinxing Yang ◽  
Joshua W McCausland ◽  
Gabriela M Kaus ◽  
...  

The FtsN protein of Escherichia coli and other proteobacteria is an essential and highly conserved bitopic membrane protein that triggers the inward synthesis of septal peptidoglycan (sPG) during cell division. Previous work has shown that the activation of sPG synthesis by FtsN involves a series of interactions of FtsN with other divisome proteins and the cell wall. Precisely how FtsN achieves this role is unclear, but a recent study has shown that FtsN promotes the relocation of the essential sPG synthase FtsWI from an FtsZ-associated track (where FtsWI is inactive) to an sPG-track (where FtsWI engages in sPG synthesis). Whether FtsN works by displacing FtsWI from the Z-track or capturing/retaining FtsWI on the sPG-track is not known. Here we use single-molecule imaging and genetic manipulation to investigate the organization and dynamics of FtsN at the septum and how they are coupled to sPG synthesis activity. We found that FtsN exhibits a spatial organization and dynamics distinct from those of the FtsZ-ring. Single FtsN molecules move processively as a single population with a speed of ~ 9 nm s-1, similar to the speed of active FtsWI molecules on the sPG-track, but significantly different from the ~ 30 nm s-1 speed of inactive FtsWI molecules on the FtsZ-track. Furthermore, the processive movement of FtsN is independent of FtsZ's treadmilling dynamics but driven exclusively by active sPG synthesis. Importantly, only the essential domain of FtsN, a three-helix bundle in the periplasm, is required to maintain the processive complex containing both FtsWI and FtsN on the sPG-track. We conclude that FtsN activates sPG synthesis by forming a processive synthesis complex with FtsWI exclusively on the sPG-track. These findings favor a model in which FtsN captures or retains FtsWI on the sPG-track rather than one in which FtsN actively displaces FtsWI from the Z-track.


2006 ◽  
Vol 75 (4) ◽  
pp. 1661-1666 ◽  
Author(s):  
Theresa Deland Ho ◽  
Matthew K. Waldor

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC), especially E. coli O157:H7, is an emerging cause of food-borne illness. Unfortunately, E. coli O157 cannot be genetically manipulated using the generalized transducing phage P1, presumably because its extensive O antigen obscures the P1 receptor, the lipopolysaccharide (LPS) core subunit. The GalE, GalT, GalK, and GalU proteins are necessary for modifying galactose before it can be assembled into the repeating subunit of the O antigen. Here, we constructed E. coli O157:H7 gal mutants which presumably have little or no O antigen. These strains were able to adsorb P1. P1 lysates grown on the gal mutant strains could be used to move chromosomal markers between EHEC strains, thereby facilitating genetic manipulation of E. coli O157:H7. The gal mutants could easily be reverted to a wild-type Gal+ strain using P1 transduction. We found that the O157:H7 galETKM::aad-7 deletion strain was 500-fold less able to colonize the infant rabbit intestine than the isogenic Gal+ parent, although it displayed no growth defect in vitro. Furthermore, in vivo a Gal+ revertant of this mutant outcompeted the galETKM deletion strain to an extent similar to that of the wild type. This suggests that the O157 O antigen is an important intestinal colonization factor. Compared to the wild type, EHEC gal mutants were 100-fold more sensitive to a peptide derived from bactericidal permeability-increasing protein, a bactericidal protein found on the surface of intestinal epithelial cells. Thus, one way in which the O157 O antigen may contribute to EHEC intestinal colonization is to promote resistance to host-derived antimicrobial polypeptides.


Sign in / Sign up

Export Citation Format

Share Document