Method of calculating multilayered shells with a monolayer having a nonlinear shear characteristic

1991 ◽  
Vol 27 (2) ◽  
pp. 219-222
Author(s):  
V. L. Narusberg ◽  
A. I. Riekstin'sh
2021 ◽  
pp. 073168442110058
Author(s):  
Dániel T Karádi ◽  
András A Sipos ◽  
Marianna Halász ◽  
Viktor Hliva ◽  
Dezső Hegyi

In technical textile engineering, macro-level phenomenological modelling effectively describes the material’s highly nonlinear behaviour. However, existing material laws concentrate on the normal stiffness in the orthotropic yarns and simplify the shear effect because of the two orders of magnitude difference between shear and normal stiffness. This article introduces an improved phenomenological model that includes nonlinear shear behaviour, and it determines the material parameters with a previously applied data fitting method for exponential functions. The nonlinear shear behaviour is valid for the elastic state, that is, at the service level of the loads. Time-dependent, cyclic loading or plastic behaviour is not considered.


2018 ◽  
Vol 53 (12) ◽  
pp. 1681-1696 ◽  
Author(s):  
Sérgio Costa ◽  
Thomas Bru ◽  
Robin Olsson ◽  
André Portugal

This paper details a complete crush model for composite materials with focus on shear dominated crushing under a three-dimensional stress state. The damage evolution laws and final failure strain conditions are based on data extracted from shear experiments. The main advantages of the current model include the following: no need to measure the fracture toughness in shear and transverse compression, mesh objectivity without the need for a regular mesh and finite element characteristic length, a pressure dependency of the nonlinear shear response, accounting for load reversal and some orthotropic effects (making the model suitable for noncrimp fabric composites). The model is validated against a range of relevant experiments, namely a through-the-thickness compression specimen and a flat crush coupon with the fibres oriented at 45° and 90° to the load. Damage growth mechanisms, orientation of the fracture plane, nonlinear evolution of Poisson's ratio and energy absorption are accurately predicted.


Langmuir ◽  
2011 ◽  
Vol 27 (6) ◽  
pp. 2880-2887 ◽  
Author(s):  
Bernd Struth ◽  
Kyu Hyun ◽  
Efim Kats ◽  
Thomas Meins ◽  
Michael Walther ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document