orthotropic composites
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
pp. 002199832110507
Author(s):  
Narin S. Fatima ◽  
Robert E. Rowlands

Although the mechanical integrity of a member can be highly influenced by associated stresses, determining the latter can be very challenging for finite orthotropic composites containing cutouts. This is particularly so if the external loading is not well known, a common situation in practical situations. Acknowledging the above, a finite elliptically-perforated orthotropic tensile laminate is stress analyzed by combining measured displacement data with relevant analytical and numerical tools. Knowledge of the external loading is unnecessary. Results are verified independently and the concepts are applicable to other situations. The developed technology can provide important design-type information for orthotropic composites. In particular, the ability to apply analyses for perforated composite structures which assume infinite geometry to finite geometries is demonstrated.


Author(s):  
L. Roy Xu ◽  
Ricardo Martinez ◽  
Kai Zhao

A new approach of measuring through-thickness Young's moduli of composite materials using nanoindentation was proposed. First, an approximate expression of the reduced modulus of nanoindentation was introduced for orthotropic composites. Second, spherical nanoindentation was conducted for an E-glass fiber/vinyl ester composite system, and measured Young's modulus was quite consistent with the previously reported value for a similar material system.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 758 ◽  
Author(s):  
Lorenzo Leonetti ◽  
Nicholas Fantuzzi ◽  
Patrizia Trovalusci ◽  
Francesco Tornabene

The aim of the present work was to investigate the mechanical behavior of orthotropic composites, such as masonry assemblies, subjected to localized loads described as micropolar materials. Micropolar models are known to be effective in modeling the actual behavior of microstructured solids in the presence of localized loads or geometrical discontinuities. This is due to the introduction of an additional degree of freedom (the micro-rotation) in the kinematic model, if compared to the classical continuum and the related strain and stress measures. In particular, it was shown in the literature that brick/block masonry can be satisfactorily modeled as a micropolar continuum, and here it is assumed as a reference orthotropic composite material. The in-plane elastic response of panels made of orthotropic arrangements of bricks of different sizes is analyzed herein. Numerical simulations are provided by comparing weak and strong finite element formulations. The scale effect is investigated, as well as the significant role played by the relative rotation, which is a peculiar strain measure of micropolar continua related to the non-symmetry of strain and work-conjugated stress. In particular, the anisotropic effects accounting for the micropolar moduli, related to the variation of microstructure internal sizes, are highlighted.


2018 ◽  
Vol 53 (12) ◽  
pp. 1681-1696 ◽  
Author(s):  
Sérgio Costa ◽  
Thomas Bru ◽  
Robin Olsson ◽  
André Portugal

This paper details a complete crush model for composite materials with focus on shear dominated crushing under a three-dimensional stress state. The damage evolution laws and final failure strain conditions are based on data extracted from shear experiments. The main advantages of the current model include the following: no need to measure the fracture toughness in shear and transverse compression, mesh objectivity without the need for a regular mesh and finite element characteristic length, a pressure dependency of the nonlinear shear response, accounting for load reversal and some orthotropic effects (making the model suitable for noncrimp fabric composites). The model is validated against a range of relevant experiments, namely a through-the-thickness compression specimen and a flat crush coupon with the fibres oriented at 45° and 90° to the load. Damage growth mechanisms, orientation of the fracture plane, nonlinear evolution of Poisson's ratio and energy absorption are accurately predicted.


2018 ◽  
Vol 5 (1) ◽  
pp. 213-231
Author(s):  
Samit Ray-Chaudhuri ◽  
Komal Chawla

Abstract A systematic investigation is carried out on how different parameters influence stress and strain concentration factors (SCF and SNCF) in a composite plate with a hole under uniaxial tension. Flat and singly curved composite plates have been modelled in ANSYS 15.0. The governing parameter includes: (i) size, shape and eccentricity of hole, (ii) number of plies, (v) fiber orientation and (vi) plate curvature. It is observed that different parameters influence the SCF and SNCF with varying degrees. For example, SCF may be as high as 7.16 for a square shaped hole. Also, SCF and SNCF are found to be approximately same in most of the cases. Finally, simplified design formulas are developed for evaluation of SCF for a wide range of hole size, eccentricity and fiber orientation.


2018 ◽  
Vol 53 (7) ◽  
pp. 941-967 ◽  
Author(s):  
Bilal Khaled ◽  
Loukham Shyamsunder ◽  
Canio Hoffarth ◽  
Subramaniam D Rajan ◽  
Robert K Goldberg ◽  
...  

The focus of this paper is the development of test procedures to characterize the damage-related behavior of a unidirectional composite at room temperature and quasi-static loading conditions and use the resulting data in the damage sub-model of a newly developed material model for orthotropic composites. This material model has three distinct sub-models to handle elastic and inelastic deformations, damage, and failure. A unidirectional composite—T800/F3900 that was the focus of our previous work, is used to illustrate how the deformation and damage-related experimental procedures are developed and used. The implementation of the damage sub-model into LS-DYNA is verified using single-element tests and validated using impact tests. Results show that the implementation yields reasonably accurate predictions of impact behavior involving deformation and damage in structural composites.


Author(s):  
Canio Hoffarth ◽  
Subramaniam D. Rajan ◽  
Robert K. Goldberg ◽  
Duane Revilock ◽  
Kelly S. Carney ◽  
...  

2016 ◽  
Vol 51 (5) ◽  
pp. 593-602
Author(s):  
M Kawai

A multiaxial quasi-brittle failure criterion for notched orthotropic composites is developed with an emphasis on establishment of an analytical formula to predict their anisotropic notched strength for any notch size under any multiaxial proportional loading. It is formulated by replacing the principal unnotched strengths with the principal notched strengths in the framework of the Tsai–Hill static failure criterion for orthotropic composites. The effects of notch size and specimen width on the principal notched strengths are described by means of the Suo-Ho-Gong model that can consider notch ductile-to-brittle transition. From the proposed multiaxial quasi-brittle failure criterion, an analytical formula is derived to predict the notched strength of finite orthotropic composite plates under multiaxial proportional loading at any angle with the principal directions of material anisotropy. The notched strength prediction formula involves a generalized notch sensitivity parameter that can be defined for any multiaxial state of stress. The multiaxial notch sensitivity parameter allows uniquely defining an intrinsic equivalent mode-I fracture toughness that is independent of notch size as well as of specimen width for any multiaxial proportional loading. Furthermore, an anisotropic size effect law for apparent equivalent mode-I fracture toughness that considers not only the effect of notch size but also the effect of specimen width is derived from the failure criterion. Finally, a quasi-brittle failure criterion for notched interface is briefly discussed as a particular case of the proposed quasi-brittle failure criterion for notched orthotropic composites.


Sign in / Sign up

Export Citation Format

Share Document