Improvement and validation of a physically based model for the shear and transverse crushing of orthotropic composites

2018 ◽  
Vol 53 (12) ◽  
pp. 1681-1696 ◽  
Author(s):  
Sérgio Costa ◽  
Thomas Bru ◽  
Robin Olsson ◽  
André Portugal

This paper details a complete crush model for composite materials with focus on shear dominated crushing under a three-dimensional stress state. The damage evolution laws and final failure strain conditions are based on data extracted from shear experiments. The main advantages of the current model include the following: no need to measure the fracture toughness in shear and transverse compression, mesh objectivity without the need for a regular mesh and finite element characteristic length, a pressure dependency of the nonlinear shear response, accounting for load reversal and some orthotropic effects (making the model suitable for noncrimp fabric composites). The model is validated against a range of relevant experiments, namely a through-the-thickness compression specimen and a flat crush coupon with the fibres oriented at 45° and 90° to the load. Damage growth mechanisms, orientation of the fracture plane, nonlinear evolution of Poisson's ratio and energy absorption are accurately predicted.

2000 ◽  
Vol 12 (1) ◽  
pp. 65-86 ◽  
Author(s):  
R. La ◽  
B. Benoist ◽  
B. de Barmon ◽  
M. Talvard ◽  
R. Lengelle ◽  
...  

1998 ◽  
Vol 26 ◽  
pp. 174-178 ◽  
Author(s):  
Peter Gauer

A physically based numerical model of drifting and blowing snow in three-dimensional terrain is developed. The model includes snow transport by saltation and suspension. As an example, a numerical simulation for an Alpine ridge is presented and compared with field measurements.


Author(s):  
Yu Zhou ◽  
Chen Xuedong ◽  
Fan Zhichao ◽  
Jie Dong

Creep failure is one of the most important failure modes in the design of hydroprocessing reactors at elevated temperatures, and the accurate prediction of the creep behavior in structural discontinuities is a critical issue for component design. A physically-based continnum damage mechanics (CDM) model was adopted to describe all three creep stages of 2.25Cr-1Mo-0.25V ferritic steel widely used in manufacturing modern hydroprocessing reactors. The material constants in the damage constitutive equations were identified using an efficient optimization scheme based on genetic algorithm (GA). The user-defined subroutine implementing the CDM model was developed using user programmable features (UPFs) in ANSYS. Three-dimensional finite element analysis of the hydroprocessing reactor was conducted to determine the critical regions, and the studies on the stress redistribution and the prediction of damage evolution in these regions during creep were carried out. The results show that FE modelling based on CDM theory can provide a good tool for creep design of complex engineering components.


1986 ◽  
Vol 22 (4) ◽  
pp. 282-291 ◽  
Author(s):  
H. Sabbagh ◽  
L. Sabbagh

Author(s):  
Chunhong Zhu ◽  
Tokio Mori ◽  
Tatsuhiro Miyamoto ◽  
Sae Osaki ◽  
Jian Shi ◽  
...  

2004 ◽  
Vol 120 ◽  
pp. 225-230
Author(s):  
P. Mukhopadhyay ◽  
M. Loeck ◽  
G. Gottstein

A more refined 3D cellular Automata (CA) algorithm has been developed which has increased the resolution of the space and reduced the computation time and can take care of the complexity of recrystallization process through physically based solutions. This model includes recovery, condition for nucleation and orientation dependent variable nuclei growth as a process of primary static recrystallization. Incorporation of microchemistry effects makes this model suitable for simulating recrystallization behaviour in terms of texture, kinetics and microstructure of different alloys. The model is flexible to couple up with other simulation programs on a common database.


Author(s):  
Michael Ryvkin ◽  
Viacheslav Slesarenko ◽  
Andrej Cherkaev ◽  
Stephan Rudykh

The paper describes a fault-tolerant design of a special two-dimensional beam lattice. The morphology of such lattices was suggested in the theoretical papers (Cherkaev and Ryvkin 2019 Arch. Appl. Mech. 89 , 485–501; Cherkaev and Ryvkin 2019 Arch. Appl. Mech. 89 , 503–519), where its superior properties were found numerically. The proposed design consists of beam elements with two different thicknesses; the lattice is macro-isotropic and stretch dominated. Here, we experimentally verify the fault-tolerant properties of these lattices. The specimens were three-dimensional-printed from the VeroWhite elastoplastic material. The lattice is subjected to uniaxial tensile loading. Due to its morphology, the failed beams are evenly distributed in the lattice at the initial stage of damage; at this stage, the material remains intact, preserves its bearing ability, and supports relatively high strains before the final failure. At the initial phase of damage, the thinner beams buckle; then another group of separated thin beams plastically yield and rupture. The fatal macro-crack propagates after the distributed damage reaches a critical level. This initial distributed damage stage allows for a better energy absorption rate before the catastrophic failure of the structure. The experimental results are supported by simulations which confirm that the proposed fault-tolerant material possesses excellent energy absorption properties thanks to the distributed damage stage phenomenon. This article is part of the theme issue ‘Modelling of dynamic phenomena and localization in structured media (part 2)’.


2019 ◽  
Vol 19 (2) ◽  
pp. 693-699 ◽  
Author(s):  
Abdulsalam Abdulaziz Al-Tamimi ◽  
Carlos Quental ◽  
Joao Folgado ◽  
Chris Peach ◽  
Paulo Bartolo

Abstract The design of commercially available fixation plates and the materials used for their fabrication lead to the plates being stiffer than bone. Consequently, commercial plates are prone to induce bone stress shielding. In this study, three-dimensional fixation plates are designed using topology optimisation aiming to reduce the risk of bone stress shielding. Fixation plate designs were optimised by minimising the strain energy for three levels of volume reduction (i.e. 25%, 45% and 75%). To evaluate stress shielding, changes in bone stress due to the different fixation plate designs were determined on the fracture plane of an idealised shaft of a long bone under a four-point bending load considering the effect of a patient walking with crutches of a transverse fractured tibia. Topology optimisation is a viable approach to design less stiff plates with adequate mechanical strength considering high volume reductions, which consequently increased the stress transferred to the bone fracture plane minimising bone stress shielding.


Sign in / Sign up

Export Citation Format

Share Document