Anisotropic fluid distributions in bimetric general relativity

1986 ◽  
Vol 127 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Shri Ram ◽  
H. S. Pandey
1979 ◽  
Vol 25 (9) ◽  
pp. 266-270 ◽  
Author(s):  
N. Rosen

1982 ◽  
Vol 26 (6) ◽  
pp. 1262-1274 ◽  
Author(s):  
Selçuk Ş. Bayin

2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040042
Author(s):  
V. F. Panov ◽  
O. V. Sandakova ◽  
E. V. Kuvshinova ◽  
D. M. Yanishevsky

An anisotropic cosmological model with expansion and rotation and the Bianchi type IX metric has been constructed within the framework of general relativity theory. The first inflation stage of the Universe filled with a scalar field and an anisotropic fluid is considered. The model describes the Friedman stage of cosmological evolution with subsequent transition to accelerated exponential expansion observed in the present epoch. The model has two rotating fluids: the anisotropic fluid and dust-like fluid. In the approach realized in the model, the anisotropic fluid describes the rotating dark energy.


2021 ◽  
Vol 18 (03) ◽  
pp. 2150041
Author(s):  
Asifa Ashraf ◽  
Zhiyue Zhang

In this study, we shall explore conformal symmetry to examine the wormhole models by considering traceless fluid. In this regard, we shall take anisotropic fluid with spherically symmetric space-time. Further, we shall calculate the properties of shape-functions, which are necessary for the existence of wormhole geometry. The presence of exotic matter is confirmed in all the cases through the violation of the Null Energy Condition. Furthermore, we have discussed the stability of wormhole solutions through the Tolman–Oppenheimer–Volkoff (TOV) equation. It is observed that our acquired solutions are stable under the particular values of involved parameters in different cases in conformal symmetry.


1995 ◽  
Vol 48 (4) ◽  
pp. 635 ◽  
Author(s):  
LK Patel ◽  
NP Mehta

In this paper the field equations of general relativity are solved to obtain an exact solution for a static anisotropic fluid sphere. The solution is free from singularity and satisfies the necessary physical requirements. The physical 3-space of the solution is pseudo-spheroidal. The solution is matched at the boundary with the Schwarzschild exterior solution. Numerical estimates of various physical parameters are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document