Coordinate gauge conditions in theN-body equations of motion in the first-order post-Newtonian approximation of general relativity

1990 ◽  
Vol 167 (1) ◽  
pp. 125-138 ◽  
Author(s):  
Rajat Roy ◽  
N. C. Rana
Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter embarks on a study of the two-body problem in general relativity. In other words, it seeks to describe the motion of two compact, self-gravitating bodies which are far-separated and moving slowly. It limits the discussion to corrections proportional to v2 ~ m/R, the so-called post-Newtonian or 1PN corrections to Newton’s universal law of attraction. The chapter first examines the gravitational field, that is, the metric, created by the two bodies. It then derives the equations of motion, and finally the actual motion, that is, the post-Keplerian trajectories, which generalize the post-Keplerian geodesics obtained earlier in the chapter.


2000 ◽  
Vol 09 (01) ◽  
pp. 13-34 ◽  
Author(s):  
GEN YONEDA ◽  
HISA-AKI SHINKAI

Hyperbolic formulations of the equations of motion are essential technique for proving the well-posedness of the Cauchy problem of a system, and are also helpful for implementing stable long time evolution in numerical applications. We, here, present three kinds of hyperbolic systems in the Ashtekar formulation of general relativity for Lorentzian vacuum spacetime. We exhibit several (I) weakly hyperbolic, (II) diagonalizable hyperbolic, and (III) symmetric hyperbolic systems, with each their eigenvalues. We demonstrate that Ashtekar's original equations form a weakly hyperbolic system. We discuss how gauge conditions and reality conditions are constrained during each step toward constructing a symmetric hyperbolic system.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550053 ◽  
Author(s):  
Amare Abebe

One of the exact solutions of f(R) theories of gravity in the presence of different forms of matter exactly mimics the ΛCDM solution of general relativity (GR) at the background level. In this work we study the evolution of scalar cosmological perturbations in the covariant and gauge-invariant formalism and show that although the background in such a model is indistinguishable from the standard ΛCDM cosmology, this degeneracy is broken at the level of first-order perturbations. This is done by predicting different rates of structure formation in ΛCDM and the f(R) model both in the complete and quasi-static regimes.


1995 ◽  
Vol 62 (3) ◽  
pp. 685-691 ◽  
Author(s):  
F. Ma ◽  
T. K. Caughey

The coefficients of a linear nonconservative system are arbitrary matrices lacking the usual properties of symmetry and definiteness. Classical modal analysis is extended in this paper so as to apply to systems with nonsymmetric coefficients. The extension utilizes equivalence transformations and does not require conversion of the equations of motion to first-order forms. Compared with the state-space approach, the generalized modal analysis can offer substantial reduction in computational effort and ample physical insight.


2016 ◽  
Vol 25 (04) ◽  
pp. 1630011 ◽  
Author(s):  
Alejandro Corichi ◽  
Irais Rubalcava-García ◽  
Tatjana Vukašinac

In this review, we consider first-order gravity in four dimensions. In particular, we focus our attention in formulations where the fundamental variables are a tetrad [Formula: see text] and a [Formula: see text] connection [Formula: see text]. We study the most general action principle compatible with diffeomorphism invariance. This implies, in particular, considering besides the standard Einstein–Hilbert–Palatini term, other terms that either do not change the equations of motion, or are topological in nature. Having a well defined action principle sometimes involves the need for additional boundary terms, whose detailed form may depend on the particular boundary conditions at hand. In this work, we consider spacetimes that include a boundary at infinity, satisfying asymptotically flat boundary conditions and/or an internal boundary satisfying isolated horizons boundary conditions. We focus on the covariant Hamiltonian formalism where the phase space [Formula: see text] is given by solutions to the equations of motion. For each of the possible terms contributing to the action, we consider the well-posedness of the action, its finiteness, the contribution to the symplectic structure, and the Hamiltonian and Noether charges. For the chosen boundary conditions, standard boundary terms warrant a well posed theory. Furthermore, the boundary and topological terms do not contribute to the symplectic structure, nor the Hamiltonian conserved charges. The Noether conserved charges, on the other hand, do depend on such additional terms. The aim of this manuscript is to present a comprehensive and self-contained treatment of the subject, so the style is somewhat pedagogical. Furthermore, along the way, we point out and clarify some issues that have not been clearly understood in the literature.


2010 ◽  
Vol 656 ◽  
pp. 337-341 ◽  
Author(s):  
PAOLO LUCHINI ◽  
FRANÇOIS CHARRU

Section-averaged equations of motion, widely adopted for slowly varying flows in pipes, channels and thin films, are usually derived from the momentum integral on a heuristic basis, although this formulation is affected by known inconsistencies. We show that starting from the energy rather than the momentum equation makes it become consistent to first order in the slowness parameter, giving the same results that have been provided until today only by a much more laborious two-dimensional solution. The kinetic-energy equation correctly provides the pressure gradient because with a suitable normalization the first-order correction to the dissipation function is identically zero. The momentum equation then correctly provides the wall shear stress. As an example, the classical stability result for a free falling liquid film is recovered straightforwardly.


It is shown how to obtain, within the general theory of relativity, equations of motion for two oscillating masses at the ends of a spring of given law of force. The method of Einstein, Infeld & Hoffmann is used, and the force in the spring is represented by a stress singularity. The detailed calculations are taken to the Newtonian order.


Sign in / Sign up

Export Citation Format

Share Document