An outline of approach linking black-hole-evaporation with quantum-field effects in flat spacetime

1983 ◽  
Vol 91 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. M. Nugayev
1987 ◽  
Vol 42 (7) ◽  
pp. 657-662
Author(s):  
R. M. Nugayev

The article is aimed at an intuitive understanding of the recently explored deep connections between therm al physics, quantum field theory and general relativity. The physical effects involved in particle creation by a black hole are viewed in terms of more familiar quantum -field effects in flat spacetime. Black hole evaporation is investigated in terms of temperature correction to the Casimir effect. T he application of the Casimir effect results and those for accelerated mirrors reveals that a black hole should produce the blackbody radiation at a temperature that exactly coincides with Hawking’s result. Its blackbody nature is due to the interaction of virtual positive-energy particles with the surface of a “cavity” formed by the Schwarzchild gravitational field potential barrier. The virtual particles are “squeezed out” by the contraction of the potential barrier and appear to an observer at J+ as the real blackbody ones.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 551-555 ◽  
Author(s):  
E. I. GUENDELMAN

It is argued that high energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space–time. This decoupling prevents the high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which take into account gravitational effects. Finally, we discuss child universe production in the last stages of black hole evaporation, the prediction of the absence of trans-Planckian primordial perturbations, the connection with the minimum length hypothesis, and in particular the connection with the maximal curvature hypothesis.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Suvrat Raju

A sharp version of the information paradox involves a seeming violation of the monogamy of entanglement during black hole evaporation. We construct an analogous paradox in empty anti-de Sitter space. In a local quantum field theory, Bell correlations between operators localized in mutually spacelike regions are monogamous. We show, through a controlled calculation, that this property can be violated by an order-1 factor in a theory of gravity. This example demonstrates that what appears to be a violation of the monogamy of entanglement may just be a subtle violation of locality in quantum gravity.


Author(s):  
Katherine Blundell

‘Entropy and thermodynamics of black holes’ considers how the laws of thermodynamics and entropy can be applied to black holes. It discusses the work of Roger Penrose, James Bardeen, Brandon Carter, and Stephen Hawking, which, using quantum mechanics and quantum field theory, has enabled these scientists to propose likely behaviour in and around black holes. The concepts of black hole evaporation and Hawking radiation are explained to show how black holes lose mass and eventually disappear. It concludes with the black hole information paradox: can the information stored in the matter that fell into the black hole ever be recovered?


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gustav Mogull ◽  
Jan Plefka ◽  
Jan Steinhoff

Abstract A precise link is derived between scalar-graviton S-matrix elements and expectation values of operators in a worldline quantum field theory (WQFT), both used to describe classical scattering of black holes. The link is formally provided by a worldline path integral representation of the graviton-dressed scalar propagator, which may be inserted into a traditional definition of the S-matrix in terms of time-ordered correlators. To calculate expectation values in the WQFT a new set of Feynman rules is introduced which treats the gravitational field hμν(x) and position $$ {x}_i^{\mu}\left({\tau}_i\right) $$ x i μ τ i of each black hole on equal footing. Using these both the 3PM three-body gravitational radiation 〈hμv(k)〉 and 2PM two-body deflection $$ \Delta {p}_i^{\mu } $$ Δ p i μ from classical black hole scattering events are obtained. The latter can also be obtained from the eikonal phase of a 2 → 2 scalar S-matrix, which we show corresponds to the free energy of the WQFT.


Sign in / Sign up

Export Citation Format

Share Document