scholarly journals Causal unitary qubit model of black hole evaporation

2021 ◽  
pp. 136564
Author(s):  
Bogusław Broda
2013 ◽  
Vol 22 (12) ◽  
pp. 1342030 ◽  
Author(s):  
KYRIAKOS PAPADODIMAS ◽  
SUVRAT RAJU

We point out that nonperturbative effects in quantum gravity are sufficient to reconcile the process of black hole evaporation with quantum mechanics. In ordinary processes, these corrections are unimportant because they are suppressed by e-S. However, they gain relevance in information-theoretic considerations because their small size is offset by the corresponding largeness of the Hilbert space. In particular, we show how such corrections can cause the von Neumann entropy of the emitted Hawking quanta to decrease after the Page time, without modifying the thermal nature of each emitted quantum. Second, we show that exponentially suppressed commutators between operators inside and outside the black hole are sufficient to resolve paradoxes associated with the strong subadditivity of entropy without any dramatic modifications of the geometry near the horizon.


2005 ◽  
Vol 20 (26) ◽  
pp. 6039-6049 ◽  
Author(s):  
XIN ZHANG

A toy model based upon the q-deformation description for studying the radiation spectrum of black hole is proposed. The starting point is to make an attempt to consider the space–time noncommutativity in the vicinity of black hole horizon. We use a trick that all the space–time noncommutative effects are ascribed to the modification of the behavior of the radiation field of black hole and a kind of q-deformed degrees of freedom are postulated to mimic the radiation particles that live on the noncommutative space–time, meanwhile the background metric is preserved as usual. We calculate the radiation spectrum of Schwarzschild black hole in this framework. The new distribution deviates from the standard thermal spectrum evidently. The result indicates that some correlation effect will be introduced to the system if the noncommutativity is taken into account. In addition, an infrared cutoff of the spectrum is the prediction of the model.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Deyou Chen ◽  
Zhonghua Li

Hawking’s calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions’ tunnelling from the charged and rotating black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases of the temperatures, which naturally leads to remnants left in the evaporation.


Universe ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. 51 ◽  
Author(s):  
Hikaru Kawai ◽  
Yuki Yokokura

1992 ◽  
Vol 01 (01) ◽  
pp. 169-191 ◽  
Author(s):  
R. PARENTANI ◽  
R. BROUT

Using tunneling concepts which account for particle production in the cases of an accelerated detector and a static electric Field in Minkowski space, the more elusive case of black hole evaporation is analyzed in terms of a detailed tunneling mechanism. For the case of the incipient black hole (collapsing star) Hawking’s “heuristic” picture in terms of pair creation, wherein one member crosses the horizon to fall into the singularity as the other is emitted to infinity, is established. The inception of tunneling is due to the motion of the star’s surface, but its completion concerns traversal of the horizon, thereby reconciling varying schools of thought concerning this problem.


1993 ◽  
Vol 400 (1-3) ◽  
pp. 393-415 ◽  
Author(s):  
S.W. Hawking ◽  
J.M. Stewart

Sign in / Sign up

Export Citation Format

Share Document