Conductance theory of concentrated electrolytes in an MSA-type approximation

1981 ◽  
Vol 10 (9) ◽  
pp. 599-609 ◽  
Author(s):  
Werner Ebeling ◽  
J�rgen Rose
Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3749-3760 ◽  
Author(s):  
Ali Karaisa ◽  
Uğur Kadak

Upon prior investigation on statistical convergence of fuzzy sequences, we study the notion of pointwise ??-statistical convergence of fuzzy mappings of order ?. Also, we establish the concept of strongly ??-summable sequences of fuzzy mappings and investigate some inclusion relations. Further, we get an analogue of Korovkin-type approximation theorem for fuzzy positive linear operators with respect to ??-statistical convergence. Lastly, we apply fuzzy Bernstein operator to construct an example in support of our result.


2008 ◽  
Vol 73 (12) ◽  
pp. 1777-1798 ◽  
Author(s):  
Olt E. Geiculescu ◽  
Rama V. Rajagopal ◽  
Emilia C. Mladin ◽  
Stephen E. Creager ◽  
Darryl D. Desmarteau

The present work consists of a series of studies with regard to the structure and charge transport in solid polymer electrolytes (SPE) prepared using various new bis(trifluoromethanesulfonyl)imide (TFSI)-based dianionic dilithium salts in crosslinked low-molecular-weight poly(ethylene glycol). Some of the thermal properties (glass transition temperature, differential molar heat capacity) and ionic conductivities were determined for both diluted (EO/Li = 30:1) and concentrated (EO/Li = 10:1) SPEs. Trends in ionic conductivity of the new SPEs with respect to anion structure revealed that while for the dilute electrolytes ionic conductivity is generally rising with increased length of the perfluoroalkylene linking group in the dianions, for the concentrated electrolytes the trend is reversed with respect to dianion length. This behavior could be the result of a combination of two factors: on one hand a decrease in dianion basicity that results in diminished ion pairing and an enhancement in the number of charge carriers with increasing fluorine anion content, thereby increasing ionic conductivity while on the other hand the increasing anion size and concentration produce an increase in the friction/entanglements of the polymeric segments which lowers even more the reduced segmental motion of the crosslinked polymer and decrease the dianion contribution to the overall ionic conductivity. DFT modeling of the same TFSI-based dianionic dilithium salts reveals that the reason for the trend observed is due to the variation in ion dissociation enthalpy, derived from minimum-energy structures, with respect to perfluoroalkylene chain length.


2005 ◽  
Vol 12 (4) ◽  
pp. 659-669
Author(s):  
Nawab Hussain ◽  
Donal O'Regan ◽  
Ravi P. Agarwal

Abstract We extend the concept of 𝑅-subweakly commuting maps due to Shahzad [J. Math. Anal. Appl. 257: 39–45, 2001] to the case of non-starshaped domains and obtain common fixed point results for this class of maps on non-starshaped domains in the setup of Fréchet spaces. As applications, we establish Brosowski–Meinardus type approximation theorems. Our results unify and extend the results of Al-Thagafi, Dotson, Habiniak, Jungck and Sessa, Sahab, Khan and Sessa and Shahzad.


Author(s):  
ALEXANDER BRUDNYI

Abstract Let $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ be the Banach algebra of bounded holomorphic functions defined on the disjoint union of countably many copies of the open unit disk ${\mathbb {D}}\subset {{\mathbb C}}$ . We show that the dense stable rank of $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ is $1$ and, using this fact, prove some nonlinear Runge-type approximation theorems for $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ maps. Then we apply these results to obtain a priori uniform estimates of norms of approximating maps in similar approximation problems for the algebra $H^\infty ({\mathbb {D}})$ .


2021 ◽  
Vol 148 ◽  
pp. 111016
Author(s):  
Bidu Bhusan Jena ◽  
Susanta Kumar Paikray ◽  
Hemen Dutta

1982 ◽  
Vol 60 (4) ◽  
pp. 558-564 ◽  
Author(s):  
F. W. Byron Jr.

A brief survey of available theoretical techniques is given for positron–atom scattering. The distinction between methods involving a finite number of target states and those with an infinite number of target states is emphasized. The situation regarding total cross sections is summarized, and a new, non-perturbative, eikonal-type approximation, based on the work of Wallace, is introduced.


1999 ◽  
Vol 51 (2) ◽  
pp. 267-308 ◽  
Author(s):  
Hitoshi ISHII ◽  
Gabriel E. PIRES ◽  
Panagiotis E. SOUGANIDIS

Sign in / Sign up

Export Citation Format

Share Document