The neuromuscular basis of courtship song inDrosophila: The role of the indirect flight muscles

1977 ◽  
Vol 119 (3) ◽  
pp. 249-265 ◽  
Author(s):  
Arthur W. Ewing
Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 874
Author(s):  
Karen Power ◽  
Manuela Martano ◽  
Gennaro Altamura ◽  
Nadia Piscopo ◽  
Paola Maiolino

Deformed wing virus (DWV) is capable of infecting honeybees at every stage of development causing symptomatic and asymptomatic infections. To date, very little is known about the histopathological lesions caused by the virus. Therefore, 40 honeybee samples were randomly collected from a naturally DWV infected hive and subjected to anatomopathological examination to discriminate between symptomatic (29) and asymptomatic (11) honeybees. Subsequently, 15 honeybee samples were frozen at −80° and analyzed by PCR and RTqPCR to determinate the presence/absence of the virus and the relative viral load, while 25 honeybee samples were analyzed by histopathological techniques. Biomolecular results showed a fragment of the expected size (69bp) of DWV in all samples and the viral load was higher in symptomatic honeybees compared to the asymptomatic group. Histopathological results showed degenerative alterations of the hypopharyngeal glands (19/25) and flight muscles (6/25) in symptomatic samples while 4/25 asymptomatic samples showed an inflammatory response in the midgut and the hemocele. Results suggest a possible pathogenic action of DWV in both symptomatic and asymptomatic honeybees, and a role of the immune response in keeping under control the virus in asymptomatic individuals.


2017 ◽  
Vol 284 (1854) ◽  
pp. 20170431 ◽  
Author(s):  
Samya Chakravorty ◽  
Bertrand C. W. Tanner ◽  
Veronica Lee Foelber ◽  
Hien Vu ◽  
Matthew Rosenthal ◽  
...  

The indirect flight muscles (IFMs) of Drosophila and other insects with asynchronous flight muscles are characterized by a crystalline myofilament lattice structure. The high-order lattice regularity is considered an adaptation for enhanced power output, but supporting evidence for this claim is lacking. We show that IFMs from transgenic flies expressing flightin with a deletion of its poorly conserved N-terminal domain ( fln ΔN62 ) have reduced inter-thick filament spacing and a less regular lattice. This resulted in a decrease in flight ability by 33% and in skinned fibre oscillatory power output by 57%, but had no effect on wingbeat frequency or frequency of maximum power output, suggesting that the underlying actomyosin kinetics is not affected and that the flight impairment arises from deficits in force transmission. Moreover, we show that fln ΔN62 males produced an abnormal courtship song characterized by a higher sine song frequency and a pulse song with longer pulses and longer inter-pulse intervals (IPIs), the latter implicated in male reproductive success. When presented with a choice, wild-type females chose control males over mutant males in 92% of the competition events. These results demonstrate that flightin N-terminal domain is required for optimal myofilament lattice regularity and IFM activity, enabling powered flight and courtship song production. As the courtship song is subject to female choice, we propose that the low amino acid sequence conservation of the N-terminal domain reflects its role in fine-tuning species-specific courtship songs.


1972 ◽  
Vol 130 (3) ◽  
pp. 697-705 ◽  
Author(s):  
B. Crabtree ◽  
E. A. Newsholme

1. The activities of tri-, di- and mono-glyceride lipase and carnitine palmitoyltransferase were measured in homogenates of a variety of muscles. These activities were used to estimate the rate of utilization of glycerides and fatty acids by muscle. In muscles whose estimated rates of fat utilization can be compared with rates calculated for the intact muscle from such information as O2 uptake, there is reasonable agreement between the estimated and calculated rates. 2. In all muscles investigated the maximum rates of hydrolysis of glycerides increase in the order triglyceride, diglyceride, monoglyceride. The activity of diglyceride lipase is highest in the flight muscles of insects such as the locust, waterbug and some moths and is lowest in the flight muscles of flies, bees and the wasp. These results are consistent with the utilization of diglyceride as a fuel for some insect flight muscles. 3. In many muscles from both vertebrates and invertebrates the activity of glycerol kinase is similar to that of lipase. It is concluded that in these muscles the metabolic role of glycerol kinase is the removal of glycerol produced during lipolysis. However, in some insect flight muscles the activity of glycerol kinase is much greater than that of lipase, which suggests a different role for glycerol kinase in these muscles.


2006 ◽  
Vol 96 (3) ◽  
pp. 1441-1455 ◽  
Author(s):  
Mimi H. Kao ◽  
Michael S. Brainard

Trial-by-trial variability is important in feedback-based motor learning. Variation in motor output enables evaluation mechanisms to differentially reinforce patterns of motor activity that produce desired behaviors. Here, we studied neural substrates of variability in the performance of adult birdsong, a complex, learned motor skill used for courtship. Song performance is more variable when male birds sing alone (undirected) than when they sing to females (directed). We test the role of the anterior forebrain pathway (AFP), an avian basal ganglia–forebrain circuit, in this socially driven modulation of song variability. We show that lesions of the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the output nucleus of the AFP, cause a reduction in the moment-by-moment variability in syllable structure during undirected song to the level present during directed song. This elimination of song modulation is immediate and long-lasting. We further show that the degree of syllable variability and its modulation are both attenuated in older birds, in concert with decreased variability of LMAN activity in these birds. In contrast to the requirement of LMAN for social modulation of syllable structure, we find that LMAN is not required for modulation of other features of song, such as the number of introductory elements and motif repetitions and the ordering of syllables or for other motor and motivational aspects of courtship. Our findings suggest that a key function of avian basal ganglia circuitry is to regulate vocal performance and plasticity by specifically modulating moment-by-moment variability in the structure of individual song elements.


Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 3755-3763 ◽  
Author(s):  
J.J. Fernandes ◽  
H. Keshishian

The six Dorsal Longitudinal flight Muscles (DLMs) of Drosophila develop from three larval muscles that persist into metamorphosis and serve as scaffolds for the formation of the adult fibers. We have examined the effect of muscle scaffold ablation on the development of DLMs during metamorphosis. Using markers that are specific to muscle and myoblasts we show that in response to the ablation, myoblasts which would normally fuse with the larval muscle, fuse with each other instead, to generate the adult fibers in the appropriate regions of the thorax. The development of these de novo DLMs is delayed and is reflected in the delayed expression of erect wing, a transcription factor thought to control differentiation events associated with myoblast fusion. The newly arising muscles express the appropriate adult-specific Actin isoform (88F), indicating that they have the correct muscle identity. However, there are frequent errors in the number of muscle fibers generated. Ablation of the larval scaffolds for the DLMs has revealed an underlying potential of the DLM myoblasts to initiate de novo myogenesis in a manner that resembles the mode of formation of the Dorso-Ventral Muscles, DVMs, which are the other group of indirect flight muscles. Therefore, it appears that the use of larval scaffolds is a superimposition on a commonly used mechanism of myogenesis in Drosophila. Our results show that the role of the persistent larval muscles in muscle patterning involves the partitioning of DLM myoblasts, and in doing so, they regulate formation of the correct number of DLM fibers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eliane Arez ◽  
Cecilia Mezzera ◽  
Ricardo M. Neto-Silva ◽  
Márcia M. Aranha ◽  
Sophie Dias ◽  
...  

AbstractPersuasion is a crucial component of the courtship ritual needed to overcome contact aversion. In fruit flies, it is well established that the male courtship song prompts receptivity in female flies, in part by causing sexually mature females to slow down and pause, allowing copulation. Whether the above receptivity behaviours require the suppression of contact avoidance or escape remains unknown. Here we show, through genetic manipulation of neurons we identified as required for female receptivity, that male song induces avoidance/escape responses that are suppressed in wild type flies. First, we show that silencing 70A09 neurons leads to an increase in escape, as females increase their walking speed during courtship together with an increase in jumping and a reduction in pausing. The increase in escape response is specific to courtship, as escape to a looming threat is not intensified. Activation of 70A09 neurons leads to pausing, confirming the role of these neurons in escape modulation. Finally, we show that the escape displays by the female result from the presence of a courting male and more specifically from the song produced by a courting male. Our results suggest that courtship song has a dual role, promoting both escape and pause in females and that escape is suppressed by the activity of 70A09 neurons, allowing mating to occur.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Gregg A. Castellucci ◽  
Matthew J. McGinley ◽  
David A. McCormick

Abstract The FOXP2 gene is important for the development of proper speech motor control in humans. However, the role of the gene in general vocal behavior in other mammals, including mice, is unclear. Here, we track the vocal development of Foxp2 heterozygous knockout (Foxp2+/−) mice and their wildtype (WT) littermates from juvenile to adult ages, and observe severe abnormalities in the courtship song of Foxp2+/− mice. In comparison to their WT littermates, Foxp2+/− mice vocalized less, produced shorter syllable sequences, and possessed an abnormal syllable inventory. In addition, Foxp2+/− song also exhibited irregular rhythmic structure, and its development did not follow the consistent trajectories observed in WT vocalizations. These results demonstrate that the Foxp2 gene is critical for normal vocal behavior in juvenile and adult mice, and that Foxp2 mutant mice may provide a tractable model system for the study of the gene’s role in general vocal motor control.


Sign in / Sign up

Export Citation Format

Share Document