Determination of the surface temperature of a burning powder

1980 ◽  
Vol 16 (2) ◽  
pp. 168-174
Author(s):  
Yu. V. Chernov
Keyword(s):  
2017 ◽  
Vol 16 (6) ◽  
pp. 1309-1316 ◽  
Author(s):  
Lucian Moldovan ◽  
Sorin Burian ◽  
Mihai Magyari ◽  
Marius Darie ◽  
Dragos Fotau

2019 ◽  
Vol 16 (2) ◽  
pp. 190-202
Author(s):  
I. Y. Parnikoza ◽  
N. Y. Miryuta ◽  
V. Y. Ivanets ◽  
E. O. Dykyi

The purpose of our work has been to determine the indicator of complex adaptability — the United Quality Latent Index of Adaptability (UQLIA) for the experimental populations of Deschampsia antarctica É. Desv. and study the contribution to it of some environmental factors such as the near soil surface temperature and organogens content. Materials and methods. The determination of UQLIA was based on a pairwise comparison of the differences between investigated parameters of populations by mathematical regression techniques. The soil surface temperature was measured by loggers installed near plants in each locus during April 2017 – April 2018. Results and conclusions. Temperature fluctuations were described during December 2017 – February 2018 for twelve experimental populations of D. antarctica and one control fragment of moss turf subformation from Galindez Island. Significant variations in average daily near surface temperature were observed during the study period between populations, especially in December and January. The UQLIA of D. antarctica for this season was calculated on the basis of the projective cover, biometric indices of generative plants and the content of protective and reserve proteins in seeds for the eleven populations. The values of the United Soil Surface Temperature Influence Index (UTII) for the season summer months and the United Organogens Content in Soil Influence Index (UOCSII) have been calculated for the individual parameters of D. antarctica plants adaptability. The reliable contribution of UTII to ULIA has been shown for December and January, at the moment of the greatest variation of soil surface temperature. UOCSII provided a reliable contribution to the ULIA only in the amount of UTII. Keywords: Deschampsia antarctica, United Quality Latent Index of Adaptability (UQLIA), contribution of soil surface temperature and organogens content to complex adaptability.


2020 ◽  
Author(s):  
Zoubair Rafi ◽  
Valérie Le Dantec ◽  
Olivier Merlin ◽  
Said Khabba ◽  
Patrick Mordelet ◽  
...  

<p>Agriculture is considered to be the human activity that consumes the most mobilized water on a global scale. However, crops planted in semi-arid areas regularly face periods of moderate to extreme water stress. Such water stress periods have a considerable impact on the seasonal yield of these crops. In order to participate in a more rational irrigation water management, monitoring of the rapid changes in plant water status is necessary. For this purpose, the combination of two different wavelength ranges will be explored : an index based on Xanthophyll cycle (Photochemical Reflectance Index, PRI) and a commonly-used index from thermal infrared spectral range (LST). An experiment on winter wheat was carried out over two agricultural campaigns (2016 to 2018) in the Haouz basin, which is located in the Marrakech region, to better assimilate the temporal dynamics of PRI and surface temperature. In this study, four different approaches are proposed to study the functioning of wheat : 1- an approach based on solar angle to remove the structure effect (PRI<sub>0</sub>) from the PRI signal and to derive a water stress index PRI<sub>j</sub>, 2- an approach based on global radiation (R<sub>g</sub>) to extrapolate a theoretical PRI (PRI<sub>th</sub>) for R<sub>g</sub> equal to zero and to calculate a water stress index PRI<sub>lin</sub>, 3- an approach that determines an optimal PRI (PRI<sub>pot</sub>) on the basis of the available water content (AWC) criterion in order to derive a stress index I-PRI and 4- an energy balance approach to extract dry and wet surface temperatures in order to establish a normalized surface temperature index (T<sub>norm</sub>). The results of this work show a strong correlation between the PRI<sub>0</sub> and the Leaf Area Index with a coefficient of determination equal to 0.92, indicating that it is possible to isolate the structural effects of wheat on the PRI signal. In addition, over the range of variation in AWC, a significant correlation with PRI<sub>j</sub>, PRI<sub>jlin</sub> and I-PRI was observed with coefficients of determination of 0.71, 0.42 and 0.24, respectively. In contrast to the T<sub>norm</sub>, which varies only for values of AWC below 30%, a coefficient of determination of 0.22 is obtained. Finally, the PRI allows us to acquire early and complete information on the response of wheat to change in AWC as opposed to the surface temperature index, revealing the potential of the PRI to monitor the water status of plants and their responses to changing environmental conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document