Crystallographic model of double aluminum lithium hydroxide using structural crystal optics data

1991 ◽  
Vol 31 (4) ◽  
pp. 589-594 ◽  
Author(s):  
I. A. Poroshina ◽  
N. P. Kotsupalo
2012 ◽  
Vol 1372 ◽  
Author(s):  
César A. C. Soto ◽  
Aurora P. Delgado ◽  
Esthela R. Ramírez ◽  
Veridiana R. Zamudio

ABSTRACTAluminum lithium hydroxide carbonate hydrate, also known as Al-Li double hydroxide or Al-Li hydrotalcite-like compound [Al2Li(OH)6]2CO3•nH2O, was prepared from basic aluminum sulfate. This compound was prepared by precipitation in homogeneous solution of an aluminum bisulfite solution. A sodium aluminate aqueous solution was prepared by dissolving basic aluminum sulfate in 1M sodium hydroxide. The Al-Li double hydroxide was obtained after addition of lithium carbonate satured solution to the sodium aluminate solution, at 60 °C. The synthesized powder was characterized by thermal analysis (TG, DTG and DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By this method crystalline Li-Al hydrotalcite like compound with composition near to Al4Li2(OH)12CO3 •3H2O was obtained.


2013 ◽  
Vol 86 (4) ◽  
pp. 482-487 ◽  
Author(s):  
N. P. Kotsupalo ◽  
A. D. Ryabtsev ◽  
I. A. Poroshina ◽  
A. A. Kurakov ◽  
E. V. Mamylova ◽  
...  

2012 ◽  
Vol 1481 ◽  
pp. 29-36
Author(s):  
C. A. Contreras Soto ◽  
E. Ramos-Ramírez ◽  
V. Reyes Zamudio ◽  
J. I. Macías

ABSTRACTAluminum lithium hydroxide carbonate hydrate, also known as Al/Li layered double hydroxide or Al-Li hydrotalcite-like compound [Al2Li(OH)6]2CO3•nH2O, was prepared by reaction of lithium carbonate with ammonium dawsonite [NH4Al(OH)2CO3]. The reaction of ammonium dawsonite with a lithium carbonate satured solution at different temperatures and lithium carbonate concentrations was studied. The obtained solids were characterized by differential thermal analysis (DTA), thermogravimetry (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). By this method, crystalline Li/Al LDH [Al2Li(OH)6]2CO3·3H2O can be obtained at 60 °C and 4 h reaction time.


Author(s):  
D.M. Vanderwalker

Aluminum-lithium alloys have a low density and high strength to weight ratio. They are being developed for the aerospace industry.The high strength of Al-Li can be attributed to precipitation hardening. Unfortunately when aged, Al-Li aquires a low ductility and fracture toughness. The precipitate in Al-Li is part of a sequence SSSS → Al3Li → AlLi A description of the phases may be found in reference 1 . This paper is primarily concerned with the Al3Li phase. The addition of Zr to Al-Li is being explored to find the optimum in properties. Zirconium improves fracture toughness and inhibits recrystallization. This study is a comparision between two Al-Li-Zr alloys differing in Zr concentration.Al-2.99Li-0.17Zr(alloy A) and Al-2.99Li-0.67Zr (alloy B) were solutionized for one hour at 500oc followed by a water quench. The specimens were then aged at 150°C for 16 or 40 hours. The foils were punched into 3mm discs. The specimens were electropolished with a 1/3 nitric acid 2/3 methanol solution. The transmission electron microscopy was conducted on the JEM 200CX microscope.


Author(s):  
D.M. Jiang ◽  
B.D. Hong

Aluminum-lithium alloys have been recently got strong interests especially in the aircraft industry. Compared to conventional high strength aluminum alloys of the 2000 or 7000 series it is anticipated that these alloys offer a 10% increase in the stiffness and a 10% decrease in density, thus making them rather competitive to new up-coming non-metallic materials like carbon fiber reinforced composites.The object of the present paper is to evaluate the inluence of various microstructural features on the monotonic and cyclic deformation and fracture behaviors of Al-Li based alloy. The material used was 8090 alloy. After solution treated and waster quenched, the alloy was underaged (190°Clh), peak-aged (190°C24h) and overaged (150°C4h+230°C16h). The alloy in different aging condition was tensile and fatigue tested, the resultant fractures were observed in SEM. The deformation behavior was studied in TEM.


2009 ◽  
Author(s):  
Ulrich Jordis ◽  
Jaywant Phopase ◽  
A. Khan Farhan

Alloy Digest ◽  
2000 ◽  
Vol 49 (7) ◽  

Abstract Alcoa alloy 2090-T83 is an aluminum-lithium sheet alloy with a combination of strength, low density, and corrosion resistance. The alloy is used in aerospace applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as joining. Filing Code: AL-371. Producer or source: Alcoa Mill Products Inc.


Sign in / Sign up

Export Citation Format

Share Document