Mining a charged black hole and the third law of black hole thermodynamics

1988 ◽  
Vol 20 (4) ◽  
pp. 359-370 ◽  
Author(s):  
Thomas A. Roman
2021 ◽  
Vol 19 ◽  
pp. 204-207
Author(s):  
Amal Pushp

According to the cosmic censorship conjecture, it is impossible for nature to have a physical singularity without a horizon because if it were to arise in any formalism, for instance as an extremal black hole (Kerr or Reissner-Nordstrom) then the surface gravity κ = 0, which is a strict violation of the third law of black hole thermodynamics. In this paper we explore whether a true singularity can exist without defying this law.


2004 ◽  
Vol 13 (04) ◽  
pp. 739-770 ◽  
Author(s):  
F. BELGIORNO ◽  
M. MARTELLINI

We discuss in the framework of black hole thermodynamics some aspects relative to the third law in the case of black holes of the Kerr–Newman family. In the light of the standard proof of the equivalence between the unattainability of the zero temperature and the entropic version of the third law it is remarked that the unattainability has a special character in black hole thermodynamics. Also the zero temperature limit which obtained in the case of very massive black holes is discussed and it is shown that a violation of the entropic version in the charged case occurs. The violation of the Bekenstein–Hawking law in favour of zero entropy SE=0 in the case of extremal black holes is suggested as a natural solution for a possible violation of the second law of thermodynamics. Thermostatic arguments in support of the unattainability are explored, and SE=0 for extremal black holes is shown to be again a viable solution. The third law of black hole dynamics by W. Israel is then interpreted as a further strong corroboration to the picture of a discontinuity between extremal states and non-extremal ones.


2020 ◽  
Vol 29 (14) ◽  
pp. 2043022
Author(s):  
Ting-Ping Liu ◽  
Jin Pu ◽  
Yan Han ◽  
Qing-Quan Jiang

In this paper, by applying the generalized uncertainty principle (GUP) at the final stage of black hole evaporation, we have proposed a thermodynamic explanation for the minimal scale of quantum gravity, i.e. it may stem from the basic requirements of the third law of thermodynamics for quantum gravitation system. At the same time, we have interestingly found that the third law of black hole thermodynamics acts as a supervisor in quantum gravity spacetime to ensure the causality of the spacetime as that does in classical gravity.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950248 ◽  
Author(s):  
Koray Düztaş ◽  
Mubasher Jamil

In this work, we attempt to overcharge extremal and nearly extremal charged black holes in string theory, known as the Garfinkle–Horowitz–Strominger solution. We first show that extremal black holes cannot be overcharged analogous to the case of Reissner–Nordström (RN) black holes. Contrary to their analog in general relativity, nearly extremal black holes can neither be overcharged beyond extremality, nor can they be driven to extremality by the interaction with test particles. Therefore, the analysis in this work also implies that the third law of black hole thermodynamics holds for the relevant charged black holes in string theory perturbed by test particles. This can be interpreted as a stronger version of the third law since one can drop out the continuity proviso for the relevant process.


2001 ◽  
Vol 10 (01) ◽  
pp. 33-39 ◽  
Author(s):  
STEFANO LIBERATI ◽  
TONY ROTHMAN ◽  
SEBASTIANO SONEGO

Recent results of quantum field theory on a curved spacetime suggest that extremal black holes are not thermal objects and that the notion of zero temperature is ill-defined for them. If this is correct, one may have to go to a full semiclassical theory of gravity, including backreaction, in order to make sense of the third law of black hole thermodynamics. Alternatively it is possible that we shall have to drastically revise the status of extremality in black hole thermodynamics.


2010 ◽  
Vol 25 (30) ◽  
pp. 5543-5555 ◽  
Author(s):  
S. HAMID MEHDIPOUR

We apply the tunneling process of charged massive particles through the quantum horizon of a Reissner–Nordström black hole in a new noncommutative gravity scenario. In this model, the tunneling amplitude on account of noncommutativity influences in the context of coordinate coherent states is modified. Our calculation points out that the emission rate satisfies the first law of black hole thermodynamics and is consistent with an underlying unitary theory.


Sign in / Sign up

Export Citation Format

Share Document