ON TIME DISLOCATION SOLUTION OF EINSTEIN FIELD EQUATIONS

1999 ◽  
Vol 14 (02) ◽  
pp. 93-97 ◽  
Author(s):  
L. C. GARCIA DE ANDRADE

The theory considered here is not Einstein general relativity, but is a Poincaré type gauge theory of gravity, therefore the Birkhoff theorem is not applied and the external solution is not vacuum spherically symmetric and tachyons may exist outside the core defect.

1978 ◽  
Vol 31 (1) ◽  
pp. 111 ◽  
Author(s):  
Max Wyman

The present author (Wyman 1946) showed that all perfect fluids which can be represented by nonstatic, spherically symmetric, isotropic solutions of the Einstein field equations can be found by solving a nonlinear total differential equation of the second order involving. an arbitrary function 'P(r). Since then several particular solutions of this equation have been found. Although the four solutions given recently by Chakravarty et at. (1976) involve particular choices of 'P(r), none of these is the general solution of the equation that results from the specific choice of 'P(r) that was made. The present paper shows how these four general solutions are obtained.


1995 ◽  
Vol 258 (1-2) ◽  
pp. 1-171 ◽  
Author(s):  
Friedrich W. Hehl ◽  
J.Dermott McCrea ◽  
Eckehard W. Mielke ◽  
Yuval Ne'eman

2016 ◽  
Vol 13 (07) ◽  
pp. 1650097
Author(s):  
Carlos Castro

After a cursory introduction of the basic ideas behind Born’s Reciprocal Relativity theory, the geometry of the cotangent bundle of spacetime is studied via the introduction of nonlinear connections associated with certain nonholonomic modifications of Riemann–Cartan gravity within the context of Finsler geometry. A novel gauge theory of gravity in the [Formula: see text] cotangent bundle [Formula: see text] of spacetime is explicitly constructed and based on the gauge group [Formula: see text] which acts on the tangent space to the cotangent bundle [Formula: see text] at each point [Formula: see text]. Several gravitational actions involving curvature and torsion tensors and associated with the geometry of curved phase-spaces are presented. We conclude with a brief discussion of the field equations, the geometrization of matter, quantum field theory (QFT) in accelerated frames, T-duality, double field theory, and generalized geometry.


1997 ◽  
Vol 06 (03) ◽  
pp. 263-303 ◽  
Author(s):  
Frank Gronwald

We give a self-contained introduction into the metric–affine gauge theory of gravity. Starting from the equivalence of reference frames, the prototype of a gauge theory is presented and illustrated by the example of Yang–Mills theory. Along the same lines we perform a gauging of the affine group and establish the geometry of metric–affine gravity. The results are put into the dynamical framework of a classical field theory. We derive subcases of metric-affine gravity by restricting the affine group to some of its subgroups. The important subcase of general relativity as a gauge theory of tranlations is explained in detail.


Author(s):  
Marta Dudek ◽  
Janusz Garecki

In the paper we show that the general relativity in recent Einstein-Palatini formulation is equivalent to a gauge field. We begin with a bit of information of the Einstein-Palatini formulation and derive Einstein field equations from it. In the next section, we consider general relativity with a positive cosmological constant in terms of the corrected curvature. We show that in terms of the corrected curvature general relativity takes the form typical for a gauge field. Finally, we give a geometrical interpretation of the corrected curvature.


Sign in / Sign up

Export Citation Format

Share Document