Development and spread of the pulse wave in the cranial cavity

1959 ◽  
Vol 48 (6) ◽  
pp. 1454-1457 ◽  
Author(s):  
M. G. Belekhova ◽  
A. I. Naumenko
Keyword(s):  
Author(s):  
Jifeng Peng ◽  
Lili Zheng ◽  
Michael Egnor ◽  
Mark Wagshul

In this paper, a computational study was carried out to investigate the CSF dynamics in the spinal cavity. A theoretical and computational model was developed to simulate the pulsatile CSF flow and the deformation of the spinal cavity that results from transmission of the CSF pulse wave from the cranial cavity. Under a pulsatile pressure gradient, the velocity profile of the flow is blunt for large Womersley numbers, while for small Womersley numbers the velocity profile is parabolic. The phase relationship between the pressure and the velocity is also related to Womersley number. This is the first step to understand the pulsatile dynamics of the CSF in the spinal cavity and will help explain the cause of related diseases and improve the clinical treatment.


VASA ◽  
2014 ◽  
Vol 43 (6) ◽  
pp. 423-432 ◽  
Author(s):  
Qingtao Meng ◽  
Si Wang ◽  
Yong Wang ◽  
Shixi Wan ◽  
Kai Liu ◽  
...  

Background: Orthostatic hypotension (OH) is a disease prevalent among middle-aged men and the elderly. The association between arterial stiffness and OH is unclear. This study evaluates whether arterial stiffness is correlated with OH and tests the usefulness of brachial-ankle pulse wave velocity (baPWV), an arterial stiffness marker, with regard to identifying OH. Patients and methods: A sample of 1,010 participants was recruited from the general population (64.8 ± 7.7 years; 426 men) who attended health check-ups. BaPWV and the radial augmentation index (rAI) were both assessed as the arterial stiffness markers, and OH was determined using blood pressure (BP) measured in the supine position, as well as 30 seconds and 2 minutes after standing. Results: The prevalence of OH in this population was 4.9 %. Compared with the non-OH group, both baPWV (20.5 ± 4.5 vs 17.3 ± 3.7, p < 0.001) and rAI (88.1 ± 10.8 vs 84.2 ± 10.7, p < 0.05) were significantly higher in the OH group. In the multiple logistic regression analysis, baPWV (OR, 1.3; 95 % CI, 1.106–1.528; p < 0.05) remained associated with OH. Moreover, the degree of orthostatic BP reduction was related to arterial stiffness. In addition, increases in arterial stiffness predicted decreases in the degree of heart rate (HR) elevation. Finally, a receiver operating characteristic (ROC) curve analysis showed that baPWV was useful in discriminating OH (AUC, 0.721; p < 0.001), with the cut-off value of 18.58 m/s (sensitivity, 0.714; specificity, 0.686). Conclusions: Arterial stiffness determined via baPWV, rather than rAI, was significantly correlated with the attenuation of the orthostatic hemodynamic response and the resultant OH. The impaired baroreceptor sensitivity might be the mechanism. In addition, baPWV appears to be a relatively sensitive and reliable indicator of OH in routine clinical practice.


VASA ◽  
2015 ◽  
Vol 44 (5) ◽  
pp. 341-348 ◽  
Author(s):  
Marc Husmann ◽  
Vincenzo Jacomella ◽  
Christoph Thalhammer ◽  
Beatrice R. Amann-Vesti

Abstract. Increased arterial stiffness results from reduced elasticity of the arterial wall and is an independent predictor for cardiovascular risk. The gold standard for assessment of arterial stiffness is the carotid-femoral pulse wave velocity. Other parameters such as central aortic pulse pressure and aortic augmentation index are indirect, surrogate markers of arterial stiffness, but provide additional information on the characteristics of wave reflection. Peripheral arterial disease (PAD) is characterised by its association with systolic hypertension, increased arterial stiffness, disturbed wave reflexion and prognosis depending on ankle-brachial pressure index. This review summarises the physiology of pulse wave propagation and reflection and its changes due to aging and atherosclerosis. We discuss different non-invasive assessment techniques and highlight the importance of the understanding of arterial pulse wave analysis for each vascular specialist and primary care physician alike in the context of PAD.


VASA ◽  
2017 ◽  
Vol 46 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Christian Alexander Schaefer ◽  
Anna Katharina Blatzheim ◽  
Sebastian Gorgonius Passon ◽  
Kristin Solveig Pausewang ◽  
Nadjib Schahab ◽  
...  

Abstract. Background: The beneficial effect of statin therapy on the progress of atherosclerotic disease has been demonstrated by numerous studies. Vascular strain imaging is an arising method to evaluate arterial stiffness. Our study examined whether an influence of statin therapy on the vessel wall could be detected by vascular strain imaging. Patients and methods: 88 patients with recently detected atherosclerosis underwent an angiological examination including ankle-brachial index (ABI), pulse wave index (PWI), central puls ewave velocity and duplex ultrasound. Captures for vascular strain analysis were taken in B-mode during ultrasound examination of the common carotid artery and evaluated using a workstation equipped with a speckle tracking based software. A statin therapy was recommended and after six months a follow-up examination took place. Meanwhile, the non-adherence of a group of patients (N = 18) lead to a possibility to observe statin effects on the vascular strain. Results: In the statin non-adherent group the ABI decreased significantly to a still non-pathological level (1.2 ± 0.2 vs. 1.0 ± 0.2; p = 0.016) whereas it stagnated in the adherent group (1.0 ± 0.2 vs. 1.0 ± 0.2; p = 0.383). The PWI did not differ in the non-adherent group (180.5 ± 71.9 vs. 164.4 ± 75.8; p = 0.436) but under statin therapy it decreased significantly (261.8 ± 238.6 vs. 196.4 ± 137.4; p = 0.016). In comparison to the adherent group (4.2 ± 2.0 vs. 4.0 ± 1.8; p = 0.548) under statin therapy the radial strain decreased significantly in the non-adherent group (4.7 ± 2.0 vs. 3.3 ± 1.1; p = 0.014). Conclusions: Our findings reveal a beneficial influence of statin therapy on the arterial wall detected by vascular strain analysis.


2007 ◽  
Vol 211 (S 2) ◽  
Author(s):  
B Schiessl ◽  
M Burgmann ◽  
V Sauer ◽  
A Neubauer ◽  
F Kainer ◽  
...  

Author(s):  
Yu. E. Moskalenko ◽  
T. I. Kravchenko ◽  
Yu. V. Novozhilova

Introduction. Slow fl uctuations in the volume and pressure of liquids in the cranial cavity have been known for a long time and have been studied for more than 100 years. However, their quantitative indicators and their practical signifi cance remain unclear until now due to the diffi culties of research. Nevertheless, it was found that they were connected with the brain activity, which made it possible to use them as one of the physiological indicators in studying the problems of manned space fl ights. Goal of research — to study the possibility of using spectral analysis of slow fl uctuations of the volume of liquids inside the cranium in order to realize the quantitative assessment of their indicators with the use of modern microelectronics and computer technology.Materials and methods. In order to solve this problem we created a complex, in which rheoencephalograph-RG-01 («Mizar») was used as a converter-modulator of physiological signals into electrical oscillations. The device was connected with the ADC (Firm «ADIstrument»), Its software allows to calculate the spectrogram with a sampling rate of 128 kHz. Studies were conducted on volunteers of younger, middle and older age groups. The respiratory rate and the electrocardiography were registered together with the rheoencephalography. Electrodes were fi xed on the volonteers′ fronto-mastoid area.Results. Slow fl uctuations the cranium representan independent physiological phenomenon. The most considerable and valuable were fl uctuations in 0,1–0,3 Hz. It was found that current frequency of 100 or 200 kHz and frequency for quantization of 80–100 kHz was optimal for performing their spectrograms. The structure of such diagram consists of 4–7 peaks with amplitude of 0,4–0,7 units compared with REG pulse amplitude. They depend on age and are characterized by hemispheric asymmetry. Spectral diagrams of slow fl ucation inside cranium are representing inpendent physiological phenomenon. These fl uctuations are not connected by common origin, with heart activity and respiration. They are connected by nature with brain activity and PRM.Conclusion. Can be an informative method for diagnostic and assessment of general status of osteopathic patients well as for the assessment of mechanisms of action of some osteopathic techniques.


Sign in / Sign up

Export Citation Format

Share Document