The determination of a one year mean sea surface height track from Geosat altimeter data and ocean variability implications

1992 ◽  
Vol 66 (4) ◽  
pp. 336-345 ◽  
Author(s):  
Yan Ming Wang ◽  
Richard H. Rapp
1992 ◽  
Vol 97 (C11) ◽  
pp. 17813-17828 ◽  
Author(s):  
Gregg A. Jacobs ◽  
George H. Born ◽  
Mike E. Parke ◽  
Patrick C. Allen

2017 ◽  
Vol 30 (22) ◽  
pp. 9195-9211 ◽  
Author(s):  
John T. Fasullo ◽  
Peter R. Gent

Abstract An accurate diagnosis of ocean heat content (OHC) is essential for interpreting climate variability and change, as evidenced for example by the broad range of hypotheses that exists for explaining the recent hiatus in global mean surface warming. Potential insights are explored here by examining relationships between OHC and sea surface height (SSH) in observations and two recently available large ensembles of climate model simulations from the mid-twentieth century to 2100. It is found that in decadal-length observations and a model control simulation with constant forcing, strong ties between OHC and SSH exist, with little temporal or spatial complexity. Agreement is particularly strong on monthly to interannual time scales. In contrast, in forced transient warming simulations, important dependencies in the relationship exist as a function of region and time scale. Near Antarctica, low-frequency SSH variability is driven mainly by changes in the circumpolar current associated with intensified surface winds, leading to correlations between OHC and SSH that are weak and sometimes negative. In subtropical regions, and near other coastal boundaries, negative correlations are also evident on long time scales and are associated with the accumulated effects of changes in the water cycle and ocean dynamics that underlie complexity in the OHC relationship to SSH. Low-frequency variability in observations is found to exhibit similar negative correlations. Combined with altimeter data, these results provide evidence that SSH increases in the Indian and western Pacific Oceans during the hiatus are suggestive of substantial OHC increases. Methods for developing the applicability of altimetry as a constraint on OHC more generally are also discussed.


2006 ◽  
Vol 36 (9) ◽  
pp. 1739-1750 ◽  
Author(s):  
Cécile Cabanes ◽  
Thierry Huck ◽  
Alain Colin de Verdière

Abstract Interannual sea surface height variations in the Atlantic Ocean are examined from 10 years of high-precision altimeter data in light of simple mechanisms that describe the ocean response to atmospheric forcing: 1) local steric changes due to surface buoyancy forcing and a local response to wind stress via Ekman pumping and 2) baroclinic and barotropic oceanic adjustment via propagating Rossby waves and quasi-steady Sverdrup balance, respectively. The relevance of these simple mechanisms in explaining interannual sea level variability in the whole Atlantic Ocean is investigated. It is shown that, in various regions, a large part of the interannual sea level variability is related to local response to heat flux changes (more than 50% in the eastern North Atlantic). Except in a few places, a local response to wind stress forcing is less successful in explaining sea surface height observations. In this case, it is necessary to consider large-scale oceanic adjustments: the first baroclinic mode forced by wind stress explains about 70% of interannual sea level variations in the latitude band 18°–20°N. A quasi-steady barotropic Sverdrup response is observed between 40° and 50°N.


2020 ◽  
Vol 8 (6) ◽  
pp. 426 ◽  
Author(s):  
Jiajia Yuan ◽  
Jinyun Guo ◽  
Yupeng Niu ◽  
Chengcheng Zhu ◽  
Zhen Li ◽  
...  

Altimeter waveforms are usually contaminated due to nonmarine surfaces or inhomogeneous sea state conditions. The present work aimed to present how the singular spectrum analysis (SSA) can be used to reduce the noise level in Jason-1 altimeter waveforms to obtain SSA-denoised waveforms, improving the accuracy of a mean sea surface height (MSSH) model. Comparing the retracked sea surface heights (SSHs) by a 50% threshold retracker for the SSA-denoised waveforms with those for the raw waveforms, the results indicated that SSA allowed a noise reduction on Jason-1 waveforms, improving the accuracy of retracked SSHs. The MSSH model (called Model 1) over the South China Sea with a grid of 2′ × 2′ was established from the retracked SSHs of Jason-1 by the 50% threshold retracker for the SSA-denoised waveforms. Comparing Model 1 and Model 2 (established from the retracked SSHs by the 50% threshold retracker for the raw waveforms) with the CLS15 and DTU18 models in the South China Sea, it was found that the accuracy of Model 1 was higher than that of Model 2, which indicates that using SSA to reduce noise level in Jason-1 waveforms can effectively improve the accuracy of the MSSH model.


Sign in / Sign up

Export Citation Format

Share Document