Role of ocean variability and dynamic ocean topography in the recovery of the mean sea surface and gravity anomalies from satellite altimeter data

1997 ◽  
Vol 71 (10) ◽  
pp. 617-629 ◽  
Author(s):  
R. H. Rapp ◽  
Y. Yi
2020 ◽  
Vol 12 (24) ◽  
pp. 4168
Author(s):  
Jiajia Yuan ◽  
Jinyun Guo ◽  
Yupeng Niu ◽  
Chengcheng Zhu ◽  
Zhen Li

Mean sea surface (MSS) is an important datum for the study of sea-level changes and charting data, and its accuracy in coastal waters has always been the focus of marine geophysics and oceanography. A new MSS model with a grid of 1′ × 1′ over the Sea of Japan and its adjacent ocean (named SJAO2020) (25° N~50° N, 125° E~150° E) was established. It ingested 12 different satellites altimeter data (including TOPEX/Poseidon, Jason-1/2/3, ERS-1/2, Envisat, GFO, HaiYang-2A, SRL/Altika, Sentinel-3A, Cryosat-2) and 24 tide gauge stations’ records and joint GNSS data. The latter were used to correct the sea surface height within 10 km from the coastline by using the Gaussian inverse distance weighting method in SJAO2020. The differences among SJAO2020, CLS15, and DTU18, as well as the differences between them and the altimeter data of HY-2A, Jason-3, and Sentinel-3A were introduced. By comparing with tide gauge records, satellite altimeter data, and other models (DTU18, DTU15, CLS15, CLS11 and WHU13), it was demonstrated that SJAO2020 produces the smallest errors, and its coastal accuracy is relatively reliable.


2012 ◽  
Vol 35 (sup1) ◽  
pp. 3-19 ◽  
Author(s):  
P. Schaeffer ◽  
Y. Faugére ◽  
J. F. Legeais ◽  
A. Ollivier ◽  
T. Guinle ◽  
...  

2009 ◽  
Vol 22 (5) ◽  
pp. 1255-1276 ◽  
Author(s):  
Kettyah C. Chhak ◽  
Emanuele Di Lorenzo ◽  
Niklas Schneider ◽  
Patrick F. Cummins

Abstract An ocean model is used to examine and compare the forcing mechanisms and underlying ocean dynamics of two dominant modes of ocean variability in the northeast Pacific (NEP). The first mode is identified with the Pacific decadal oscillation (PDO) and accounts for the most variance in model sea surface temperatures (SSTs) and sea surface heights (SSHs). It is characterized by a monopole structure with a strong coherent signature along the coast. The second mode of variability is termed the North Pacific Gyre Oscillation (NPGO). This mode accounts for the most variance in sea surface salinities (SSSs) in the model and in long-term observations. While the NPGO is related to the second EOF of the North Pacific SST anomalies (the Victoria mode), it is defined here in terms of SSH anomalies. The NPGO is characterized by a pronounced dipole structure corresponding to variations in the strengths of the eastern and central branches of the subpolar and subtropical gyres in the North Pacific. It is found that the PDO and NPGO modes are each tied to a specific atmospheric forcing pattern. The PDO is related to the overlying Aleutian low, while the NPGO is forced by the North Pacific Oscillation. The above-mentioned climate modes captured in the model hindcast are reflected in satellite altimeter data. A budget reconstruction is used to study how the atmospheric forcing drives the SST and SSH anomalies. Results show that the basinwide SST and SSS anomaly patterns associated with each mode are shaped primarily by anomalous horizontal advection of mean surface temperature and salinity gradients (∇ Tand ∇ S) via anomalous surface Ekman currents. This suggests a direct link of these modes with atmospheric forcing and the mean ocean circulation. Smaller-scale patterns in various locations along the coast and in the Gulf of Alaska are, however, not resolved with the budget reconstructions. Vertical profiles of the PDO and NPGO indicate that the modes are strongest mainly in the upper ocean down to 250 m. The shallowness of the modes, the depth of the mean mixed layer, and wintertime temperature profile inversions contribute to the sensitivity of the budget analysis in the regions of reduced reconstruction skill.


2019 ◽  
Vol 47 (3) ◽  
pp. 39-57
Author(s):  
M. N. Koshlyakov ◽  
R. Yu. Tarakanov ◽  
D. S. Savchenko

Kinetic energy six jets of the Antarctic Circumpolar Current (ACC), and of synoptic eddies generated by these jets is studied in application to the near-surface layer of the Antarctic Circle on the base of the satellite altimeter data during 1993–2015. The main results of the study were as follows: a) prevalence of the energy of middle jet of the Subantarctic Current over energy of the rest ACC jets in the whole of the Antarctic Circle; b) five times excess of the mean energy of jets proper over the mean summary (cyclones plus anticyclones) energy of eddies; c) two times excess of mean energy of cyclonic eddies over energy of anticyclones.


Ocean Science ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. 471-479 ◽  
Author(s):  
Remko Scharroo ◽  
Hans Bonekamp ◽  
Christelle Ponsard ◽  
François Parisot ◽  
Axel von Engeln ◽  
...  

Abstract. The Sentinel-6 mission is proposed as a multi-partner programme to continue the Jason satellite altimeter data services beyond the Jason-2 and Jason-3 missions. The Sentinel-6 mission programme consists of two identical satellites flying in sequence to prolong the climate data record of sea level accumulated by the TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3 missions from 2020 to beyond 2030. The Sentinel-6 mission intends to maintain these services in a fully operational manner. A key feature is the simultaneous pulse-limited and synthetic aperture radar processing allowing direct and continuous comparisons of the sea surface height measurements based on these processing methods and providing backward compatibility. The Sentinel-6 mission will also include radio occultation user services.


Sign in / Sign up

Export Citation Format

Share Document